‘‘‘‘‘

S0 . P L L
'.“.'?"~ ""':,".r-,:_

NPS62-89-022

NAVAL POSTGRADUATE SCHOOL
Monterey , California

LO
V.
w -
2 DTIC
N ELECTE
g JAN1 1990
|
Q
<

THESIS (s B

e et e

CONTROL OF AN EXPERINMENT
TO MEASURLE ACOUSTIC NOISE IN THE
SPACE SHUITLE
by

Charles B. Cameron

June 1989

Thesis Advisor Rudolf Panholzer

R

Approved for public release; distribution is unlimited.

Prepared for:
Naval Postgraduate School
Monterey, CA 93943.5000

90 01 17 187

NAVAL POSTGRADUATE SCHOOL

Monterey, California

Rear Admiral R. C. Austin
Superintendent

Dr. Harrison Shull
Provost

Reproduction of all or part of this report is authorized.

This report was prepared by:

CZ@iZQL_ Eg.C;ﬂfLAAY\\
Charles B. Cameron, LT, USN
Code 39 ., W

Naval Pos%qraduate’School
Monterey, CA 93943-5000

Reviewed by:

;%;%:jz‘—'(:SP <:;Lr1»:"-=>

P. POWERS
Chairman, Department of
Electrical and Computer
Engineering

_2LS nrh

GORDON E. SCHACHER
Dean, Science and
Engineering

v

£/

DISCLAIMER NOTICE

o

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

Unclassified

security classification of this page

REPORT DOCUMENTATION PAGE

la Report Security Classification Unclassified 1b Restrictive Markings

2a Security Classification Authority 3 Dustribution Availability of Report

2b Declassification Downgrading Schedule Approved for public release; distribution is unlimited.
4 Performing Organization Report Number(s) 5 Monitoring Organization Report Number(s)

NPS62-89-022

6a Name of Performing Organization 6b Office Symbol 7a Name of Monitoring Organization

Naval Postgraduate School (if applicable) 39 Naval Postgraduate School

6¢ Address (ciry, state, and ZIP code) 7b Address (clty, state, and ZIP code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

8a Name of Funding Sponsoring Organization | 8b Office Symbol 9 Procurement Instrument Identification Number Unfunded
Naval Postgraduate School (if applicable)

8¢ Address (ciry, stare, and ZIP code) 10 Source of Funding Numbers

Monterey, CA 93943-5000 Program Element No [Project No | Task No | Work Unit Accession No

11 Tutle (include security classificaions CONTROL OF AN EXPERIMENT TO MEASURE ACOUSTIC NOISE IN THE
SPACE SHUTTLE (Unclassified)

12 Personal Authoris) Charles B. Cameron

13a Type of Report 13b Time Covered 14 Date of Report (year, monih, day) 15 Page Count
Master’s Thesis From To June 1989 255

16 Supplementary Notation The views expressed in this thesis are those of the author and do not reflect the official policy or po-
sition of the Department of Defense or the U.S. Government.

17 Cosati Codes 18 Subject Terms « continug on réverse if necessary and Jdeniify by block numéber)
Field Group subzroup—gcontrol! Space Shuttle” bubble memory *microprocessor;, Get Away Special, autonomous,
‘ —1C, Z- SO-Vacousuc matched filter? Auxiliary Power Lmt T, Pbee ;j o

. £ 0
. 3 Abstract (continue on reverse if necessary and identiry by block number)
This thesis describes the potential use of a general-purpose controller autonomously to measure acoustic vibration in the
Space Shuttle Cargo Bay durning launch. The experimental package will be housed in a Shuttle Get Away Special (GAS)
canister.
We have implemented the control functions with software written largely in the C programming language. We use an IBM
MS.DOS computer and C cross-compiler to generate Z-80 assembly language code, assemble and link this code. and then
transfer it to EPROM for use in the experiment’s controller. The software is written in a modular fashion to permut adapting
it easily to other applications. The software combines the experimental control functions with a menu-dnven, diagnostic
subsystern to ensure that the software will operate in practice as it does in theory and under test.
The experiment uses many peripheral devices controlled by the software described in this thesis. These devices include: a
solid-state data recorder, a bubble memory storage module, a real-time clock, an RS-232C senal interface. a power control
subsystem, a matched filter subsystem to detect activation of the Space Shuttle’s auxiliary power units five minutes prior to
launch, a launch detection subsystem based on vibrational and barometric sensors, analog-to-digital converters, and a heater
subsystem. The matched filter design is discussed in detail in this thesis. and the results of a computer simulation of the
performance of its most critical sub-circuit are presented. V.

oty 4 J '
!
20 Distribution Availability of Abstract 21 Abstract Security Classification
& unclassified unhmited O same as report O DTIC users Unclassified
22a Name of Responsible Individual 22b Telephone (include Area code) 22c OfTice Symbol
Rudolf Panholzer (408) 646-2154 72Pz
DD FORM [473.84 MAR 83 APR edition may be used unul exhausted security classtfication of this page

All other editions are obsolete

Unclassified

Approved for public release; distribution is unlimited.

Control of an Experiment
to Measure Acoustic Noise in the
Space Shuttle

by

Charles B. Cameron
Lieutenant, United States Navy
B. Sc., University of Toronto, 1977

Submitted in partial fulfillment of the
requirements for the degrees of

MASTER OF SCIENCE IN ELECTRICAL ENGINLEERING
and
ELECTRICAL ENGINEER

from the

NAVAL POSTGRADUATE SCIHIOOL
June 1989

Author: M B G.W\LL"LV

Charles B. Cameron

Approved by: '\‘ [éL/L? ZW /WL/

Rvdolt Panhol /(\?h\unsor

Ste\en L Ga ett Second {eader

APLQ@M

\ John P. Powers, Chairman,

Department of Computer and Electrical Engineering

e L,

Gordon E. Schacher,
Dcan of Science and Engincering

ABSTRACT

This thesis describes the potential use of a general-purpose controller autonomously
to measure acoustic vibration in the Space Shuttle Cargo Bay during launch. The ex-
perimental package will be housed in a Shuttle Get Away Special (GAS) canister.

We have implemented the control functions with software written largely in the C
programming language. We use an IBM MS'DOS computer and C cross-compiler to
generate Z-80 assembly language code, assemble and link this code, and then transfer it
to EPROM for use in the experiment’s controller. The software is written in a modular
fashion to permit adapting it easily to other applications. The software combines the
experimental control functions with a menu-driven, diagnostic subsystem to ensure that
the software will operate in practice as it does in theory and under test.

The experiment uses many peripheral devices controlled by the software described
in this thesis. These devices include: a solid-state data recorder. a bubble memory
storage module, a real-time clock, an RS-232C serial interface, a power control subsys-
tem, a matched filter subsystem to detect activation of the Space Shuttle's auxiliary
power units five minutes prior to launch, a launch detection subsystem based on
vibrational and barometric sensors. analog-to-digital converters. and a heater subsystem.
The matched filter design is discussed in detail in this thesis. and the results of a com-

puter simulation of the performance of its most critical sub-circuit are presented.

Accession For

NTIS GRA&I l?

DTIC TAB 0
Unannounced (]
Jusatifieation .}

By
| _Distribution/
Availabild Y'! 006_05
[Avail and/or
Dist Special

i\"

TABLE OF CONTENTS

L INTRODUCTION L i i i e ettt et e e 1
A. GET AWAY SPECIAL (GAS) ..ttt ittt 1
B. THE VIBRO-ACOUSTIC EXPERIMENT 2
C. DIFFERENCES FROM EARLIER EFFORTS 2

1. Isolation of Microphones i, 2
2. Solid State Data Recorder (SSDR) Using Bubble Memory 3
3. Microprocessor Control of the Experiment 3
D. PROCEDURAL OUTLINE OF THE VIBRO-ACOUSTIC EXPERIMENT 4
I. Sweep Phase 4
2. Detection of the Auxiliary Power Units (APUs) 4
3. Scroll Phase s
4. Launch Phase S
5. Post-launch Operations i iiiiiiinn 6
6. Abridged Experiment 6
E. IRREGULARITIES e e 7
F. OTHER APPLICATIONS i S
II. CONTROLHARDWARE 10
A. STANDARD CONTROLLER o i i 10
1. NSC810A RAM-I O-Timersot 10
2. On-board Analog-to-digital Converter 12
3. Bubble Memory Module for the Controller 12
4. Real Time Clocko i i 13
5. RS-232C Serial Input' Output Portot 13
B. ADDITIONAL CONTROLLER HARDWARE 14
I. Analog-to-digital Converter Subsystems 14
2. Solid State Data Recorder (SSDR) vt 14
3. Matched Filter ... i e 16
4. Voltage Controlled Oscillator (VCO)t 17
5. Vibration-activated Launch Detector 17
6. Barometric pressure switches i i 18

iv

8. Power Control Subsystemc..cuutiiiii 19

III. THE MATCHED FILTER 0. 21
A. MICROPHONE INPUTSTAGE 21
B. HIGH-PASS FILTER et 22
C. PRE-AMPLIFIER ... e i 23
D. FOURTH-ORDER, ELLIPTICAL (CAUER), BANDPASS FILTER 23
E. ADJUSTABLE GAIN ... e i 32
F. FULL-WAVE RECTIFIER 32
G. LOW-PASS FILTER e 34
H. THRESHOLD DETECTOR i 38
I. RESETTABLE PULSECOUNTER i 38
J. PULSE GENERATOR 40
K. SUMMARY o 42
IV, DESIGN OF THE CONTROL SOFTWARE 43
A, MEMORY MAP o 43
B. OPERATION OF THE VIBRO-ACOUSTIC EXPERIMENT 435
1. Menu-driven Diagnostic Program 43

2. Performing the Experiment 46

a. Microprocessor Control Program 46

b. Initialize Hardware 47

¢. Run the Vibro-acoustic Experiment 47

d. Immalize Software 48

e. Do Sweep ... 49

f. Start Recording Response at Known Frequencies 51

g. Stop Recording Response at Known Frequencies St

h. Wait for APUs to Start or for Launch Indications 53

L Do Scroll ... e 53

I ADBOIT L e 54

k. DoLaunch 0 i 54

. Check fora Completed Launch 33

m. Do Post-launch e 37

n. Monitor Heater Subsystem Operation 57

0. Do Record ..o it e e 57

V. HOW TO GET THE EXPERIMENT READY FOR A LAUNCH 63
A. UNABRIDGED EXPERIMENT o it 63
B. ABRIDGED EXPERIMENT i 64
C. BOTH VERSIONS OF THE EXPERIMENT 64
VI. TESTINGOF THESOFTWARE i 65
VII. CONCLUSIONS ... e 68

APPENDIX A. DERIVATION OF DESIGN EQUATIONS FOR THE

MATCHED FILTER ... i e 72
A. BIQUADRATIC FILTERS USING TWO OPERATIONAL AMPLIFIERS 72
B. HIGH-PASS NOTCH FILTER 76
C. LOW-PASSNOTCH FILTER i . 78
D. A SECOND-ORDER, LOW-PASS FILTER USING ONLY ONE OPER-

ATIONAL AMPLIFIER ... 30

APPENDIX B. CHOICE OF A SOFTWARE DEVELOPMENT SYSTEM 83

A, Z-SOASSEMBLY LANGUAGE ... oo §3
B. CPMANDTOOLWORKSC i 83
C. MSDOSAND UNIWAREC i 34
D. GENERATION OF FIRMWARE INEPROM 83

APPENDIX C. HOW THE UNIWARE SOFTWARE USES THE COMPUTER
MEMORY . 86

APPENDIX D. HIERARCHICAL ORGANIZATION OF SOFTWARE FILLES 88

A. SUBDIRECTORY \VIBRO\CONTRLR\HEADERS 88
B. SUBDIRECTORY \VIBRO\CONTRLR\CSOURCE 88
C. SUBDIRECTORY \VIBRO\CONTRLRIASMSOURC 88
D. SUBDIRECTORY \VIBRO\CONTRLR\BATCH 88
E. SUBDIRECTORY \VIBRO\CONTRLR\LIST 89
F. SUBDIRECTORY \VIBRO\CONTRLR\OBJECT 89

vi

APPENDIX E. SUBROUTINES, IN ALPHABETICAL ORDER BY NAME

APPENDIX F. SUBROUTINES, IN ALPHABETICAL ORDER WITHIN

EACH MODULE ... e et
APPENDIX G. CONTROL PROGRAM DOCUMENTATION
A. MAJOR SUBROUTINES AND FUNCTIONS o it
Lo omain() ..o e e e e
2. void inithardware(void) i
3. charcheckprt(void)t e
4. void shut_down_no_log(void) ...
5. char menu(char experiment_flag)
6. vold version{void) e e
T.oovold rte(void) .o e e
8. void clockread(struct datetime *your_clock)
9. void dump_clock(struct datetime *clock)
10. void clockset(struct datetime *clock) i i e
11, void testtimeout(void) i e
12, void pwrent(void)o e
13. void bubmenu(void) e e
I4. charbub_on(vold)
IS. voidbub_ offfvoid)
16, char bubinit(void) e e
17. void bubemdmenu(void)
18. wvoid testpattern(char buffer{) o . o
19. void showbubbufl{char buffer]], charmode)
20. char bubio(char command, int page, char *buffer)
21. void rdstatreg(void)
22, void expmnt(void) e e e
SUPPORTING SUBROUTINES AND FUNCTIONS
I. Filebubble.c i e
a. void bpageset(intpage) i,

b. charissububemd(char command) 0

2. Filebubrw.s e
a. charbubxfer(void)0

vid

b. char bubread(char *buffer) 125
¢. char bubwrite(char *buffer) 125
3. Fileclocke .ot e e e e 126

a. void clockint(struct datetime *clock, struct idatetime *iclock) ... 126
b. char clockcompare(struct idatetime *clockl, struct idatetime

FClOCKY) L e e 126
c. void clocksum(struct idatetime *result, struct idatetime *clockl,
struct idatetime *ClocK2) i e 126
d. void show_waketime(struct idatetime *waketime) 127
e. void dump_iclock(struct idatetime *clock) 127
f. void get_time(struct idatetime *clock) 127
g. void show_waketime(struct idatetime *waketime) 127
h. char timeout(int delaytime. int measure) 127
4. File convert.c ... i e 128
a. char atoh(char ®ascii) o i i 128
b. unsigned int atohexint(charasciil [} 128
C. N AtOHChar ™S} it e 128
d. char *bed_asc(charbed) ... o oo 129
e. intbed int(charbed) i 129
f. char *ctoh(charbyte) L. 129
g. charint_bcd(int decimal) 129
h. char *itoa(intn,char[) L 129
I chartolower(int €) .. v v i i 130
j- char *uitoh(unsigned int word), 130
S. Filedelavis .o 130
a. voiddelay(intn) ... IRI
6. File eXpmNtC ..ottt 130
a. charad_read(charport) i L 130
b. int adtoint(char addata, unsigned long multipher) 130
¢. void alter_page0(struct pageOdata * pagezero) 131
d. char bad_idea_to_rccord(char show) 132
e. void display_pageO(struct pageOdata * pagezero) 132
f. voiddo_sweep{void) i i 132
g. chariniualize(void) i 133
h. charlisten(void) i i i 133
Viii

i. char logevent(charevent), 133

J. voidlog menu(void) 134

k. void monitor_heaters(void) i 134

. void post_launch(void) 135

) m. voidrecord(void) e 135
n. void short_experiment(void), 135

) o. void show_event(charevent) 136
p. void shut_down(void) 136

q. char ssdrmode(charmode) 136

r. char ssdr_status(void) 137

s. char voltages_low(void) i, 137

t. char we_launched(void) 137

7. Filefputc.c ..o o 137

a. int fpute(int chr, void *device) 137

File global.c ... o 138

File inout.c ... 13§

a. void allow_ctrl_interrupts(void) 138

b. void dump(unsigned int address, unsigned int lengthy 138

¢. chargethex(void) 138

- d. unsigned int gethexint(void) oL 138
€. INT geUNU(VOId) « vt e 139

. f. int getpageno(void) 139
g. char look_ahead(char *charactery 139

h. char termin(void) e 139

Lovoid testinput(void) ... 140

] void testoutput(void) ... 140

10. Filemainc ... 140

a. void memory_dump(void) oo oo 140

b, void testio(void) ... 140

1. Filembrkss e 141

a. char *mbrk(long size, long *realsize) 141

12, Filenewio.s i 141

” a. charinput(charport) i 141
b. void output(char port, chardata) 141

. 13, File power.c .. 141

X

C.

a. void power_status(void)
b. char power_write(charcommand)
I Filestarts
PROGRAM MAINTENANCE i o
1. Procedures for Generating a New Executable Program
a. Compilethe Csourcefileso.....
b. Assemble the Assembly Code Source Files
¢. Link Modules Together
2. Getting the Executable Program into EPROM
a. Copy the Executable Program to a Diskette
b. Prepare to Write EPROMs

APPENDIX H. CONTROL PROGRAM SOLRCECODE

A.

B.

O mmon

ey e

Z =

<oHOmO DOV

FILENAME SPEC ... o
FILENAME VERSIONHo
FILENAME VERSION.C
FILENAME VIBROH oo
FILENAME BUBBLEH
FILENAME BUBBLE.C
FILENAMEBUBRW.H
FILENAME BUBRW.S ...
FILENAMECLOCK.H o i i
FILENAME CLOCK.C ... s
FILENAME CONVERTH oo o o oo
FILENAME CONVERT.C ...
FILENAME DELAY.H o o i o i oo
FILENAME DELAY.S
FILENAME EXPMNT.H i
FILENAME EXPMNT.C
FILENAME FPUTC.C i
FILENAME GLOBALH
FILENAME GLOBAL.C i i e
FILENAME INITIALH o i,
FILENAME INITIAL.C
FILENAMEINOUTH i

W, FILENAMEINOUT.C e 203
X. FILENAME MAINH 210
Y. FILENAME MAIN.C .. e 210
Z. FILENAME MBRK.S e 213
AA. FILENAMENEWIOH o i i, 214
AB. FILENAME NEWIO.S i 214
AC. FILENAMEPOWERH o i i i L. 215
AD. FILENAME POWER.C i i i i, 215
AE. FILENAME START.S i, 217
AF. FILENAME ASMBAT i i 220
AG. FILENAME ASMLIST.BAT e 220
AL FILENAME CBAT i 220
AL FILENAME LINK.BAT .. e 221
AJ. FILENAME LIST.BAT ... oo 221
AK. FILENAME LOADMAPBAT e 221
AL, FILENAME PRINTALLBAT 221
AM. FILENAME PROMLINK.BAT o 0203
AN, FILENAME PROMOUT.BAT0 223
AO. FILENAME PROMSYM.BAT 223
AP FILENAME READYOUT.BAT oo oo 0223
APPENDIX I. RS-232C INTERFACE PIN CONNECTIONS 24
LIST OF REFERENCES e 229
INITIAL DISTRIBUTION LIST e 231
xi

Table

Table

Table

Table
Table
Table
Table
Table
Table
Table

Table

Table
Table
Table

Table
Table
Table
Table
Table
Table

RN - SRV N

10.

LIST OF TABLES

. ASSIGNMENT OF BITS IN THE RS-232C SERIAL INTERFACE
PORT . e 14
. BIT ASSIGNMENTS FOR READING POWER SUBSYSTEM RELAY
SETTINGS . e e 15
. BIT ASSIGNMENTS FOR CONTROLLING POWER SUBSYSTEM
RELAYS . e 16
SSDRCOMMAND CODES i 17
SSDRSTATUSCODES i i 17
. BIT ASSIGNMENTS IN PORT C, OF NSC8I0A £#1 18
. BIT ASSIGNMENTS IN PORT G, OF NSCSI10A =2 19
. SUBROUTINEINDEX 91
.MSDOSFILEINDEX .. 99
BIT ASSIGNMENTS FOR THE BUBBLE MEMORY CONTROLLER
(BMC)STATUSBYTE 119
. CONTENTS OF THE PARAMETRIC REGISTERS IN THE BUBBLE
MEMORY CONTROLLER o 122

. CONTENTS OF SUBDIRECTORY \VIBRO\CONTRLR{BATCH .. 143
. CONTENTS OF SUBDIRECTORY \VIBRO\CONTRLR\CSOURCE 146

. CONTENTS OF SUBDIRECTORY
\VIBRO\CONTRLRIASMSOURC 147
CONTENTS OF SUBDIRECTORY \VIBRO\CONTRLR\HEADERS 148
RS-232C INTERFACE PIN CONNECTIONS 1L 224
. RS-232C INTERFACE PIN CONNECTIONS (CONTINUED) 225
RS-232C INTERFACE PIN CONNECTIONS (CONTINUED) 226
. RS-232C INTERFACE PIN CONNECTIONS (CONTINUED) 227
. RS-232C INTERFACE PIN CONNECTIONS (CONTINUED) 228

LIST OF FIGURES

Figure 1. Block diagram of major components of the Vibro-acoustic Experiment. 11
Figure 2. Block diagram of the Matched Filter. 22
Figure 3. The microphone inputstage.ciiierierrunn.. 23
Figure 4. High-pass filter. 24
Figure 5. Pre-amplifier. e 25
Figure 6. Magnitude of the transfer function of the elliptical bandpass filter. 26
Figure 7. A generalized biquadratic filter using two operational amplifiers. 27
Figure 8. A fourth-order, elliptic bandpass filter withQ = 12 28
Figure 9. Notch filters 29
Figure 10. Frequency response of the simulated bandpass filter 32
Figure 11. Amplifier providing a variable voltage gainup to 28 = 289 dB. 33
Figure 12. Full-wave rectifier. 34
Figure 13. A general second-order, single operational amplifier. low-pass filter. 33
Figure 14. Second-order, low-pass filter. i 30
Figure 15. Threshold detector. e 38
Figure 16. Resettable Pulse Counter ..., 39
Figure 17. Astable operation of the LM355 Timer to generate a pulse train. 40
Figure 18. Pulse Generator.t 41
Figure 19. Memory map of the computer 44
Figure 20. Flowchart O e 48
Figure 21. Flowchart 1 49
Figure 22. Flowchart 2 ... o e 30
Figure 23. Flowchart 2.1 e S1
Figure 24. Flowchart 2.2 i e 52
Figure 25. Flowchart 2.2.2 i e 33
Figure 26. Flowchart 2.2.d4 54
Figure 27. Flowchart 2.3 it i e 53
Figure 28. Flowchart 2.4 ittt e e 56
Figure 29. Flowchart 2.4.4 i i e 57
Figure 30. Flowchart 2.5 e 58
Figure 31. Flowchart 2.5.3 i e 39

Figure 32. Flowchart 2.6o ittt it ittt e et e 60

Figure 33. Flowchart 2.6.3 i 61

Figure 34, Flowchart 2.7 .. ittt ettt et iee ey 62

Figure 35. Hierarchical Organization of Software Files 89
xiv

GLOSSARY

Analog-to-digital (A/D) Converter: Analog signals are signals whose levels vary con-
tinuously as a function of time. Digital signals are signals which take on discrete
(quantized) values, and these values remain constant for some given period of time,
at which time the level is updated. An analog-to-digital converter samples a contin-
uous input signal, decides which of a finite set of discrete values is the best one to de-
scribe the input signal. and outputs that discrete value. A regular clock is used to
cause the input to be sampled again on a repetitive basis, and the output likewise is
updated at the same rate. A digital computer cannot deal with continuous signal lev-
els, so A D converters are routinely used to let such computers read signal levels in the
form they can handle, as digital values.

Auxiliary Power Unit (APU): The APUs are jet-turbine-powered engines used during
both launch and recovery to operate the control surfaces of the space shuttle. Because
they have a limited amount of fuel, the mission will be scrubbed if thev operate for
more than seven minutes before launch. The Vibro-acoustic Experiment attempts to
detect them. Ifit is successful in doing so, it can anticipate launch.

ASCII: American Standard Code for Information Interchange. This is a seven-bit
data code used in many digital systems to represent alphabetic and numeric characters,
punctuation marks and a number of non-printing characters commonlyv used to pass
information from one device to another. Since most digital systems are based on
eight-bit bytes, one bit, the high-order one, is unused in the ASCII scheme. It is not
uncommon for manufacturers to appropriate the extra bit for their own purposes.

BAUD: The baud rate is the number of symbols transmitted in one second. In manv
computer systems, one symbol can represent one bit (zero or one) and so the baud rate
and the bit rate are equal.

BCD: Binary Coded Decimal. In this format, two four-bit codes are stored in a single
eight-bit byte. Euach of these four-bit codes can take on anv of ten values from 0Ox0
through 0x9. Values from Oxa through Oxf are forbidden. The interpretation of these
four-bit codes is that thev represent the decimal digits from 0 through 9. Thus, a single
eight-bit byte can represent decimal numbers from O through 99. This format is the
only one used by the National Semiconductor MM38167A real time clock.

Bubble Memory: This is a form of integrated circuit memory which uses magnetic
domains for storing information. These domains look like bubbles when viewed under
a microscope, hence the name. Applving magnetic fields to the bubbles causes them
to move about, permitting the information they represent to be stored and retrieved.
From the standpoint of a user, they generally have two chief characteristics:

1. The data are stored in a combination of random and sequential methods. Thus
groups of data can be accessed randomly, but the elements of the group must be
accessed sequentially. This is analogous to the way a disk storage device oper-
ates. It accesses tracks directly, by moving its read-write head radiallv over the
disk’s surface to one of a set of concentric circles, called tracks. Once the head
is positioned over the desired track, data is sequentiallv read from or written to
it.

Xxv

2. The data they contain are non-volatile. Removing power from them does not
destroy their contents, provided this is done in a controlled manner. This is in
contrast to the destruction of data in tvpical integrated circuit memories when
power is removed from them. Those memories are non-volatile onlyv if a batterv
backup is available. The Intel bubble memory we are using will lose data if the
temperature wanders outside the range [— 20, + 75])°C [Ref. I: Chapter 1, p.3].

Digital-to-analog (D/A) converters: See the earlier discussion of analog-to-digital con-
verters for some background on the difference between analog and digital signals. The
purpose of the digital-to-analog converter is to convert a digital signal to a smoothly
varving continuous signal. Since the digital signal actually varies in jumps, it is not
smooth to begin with. D A converters use low-pass filters to eliminate the high-
frequency components represented by the sudden jumps of a digital signal.

Dynamic: In the C programming language, most variables are dynamic. This means
that they are created when a C function commences executing and are destroved when
that function completes executing. This is in contrast to the way szatic (g.v.) variables
work.

EEPROM: Electrically erasable, programmable ROM (g.v.). The contents of
EEPROMSs are not as easily modified as are the contents of RAMs. but they are
non-volatile (thev don’t lose their contents when power is removed.) The contents of
these memories can be erased electrically, but generally at a much slower rate than
that at which they can be read.

EPRONM: Erasable, programmable ROM (g.v.). EPROMs can be erased for re-use
if thev are exposed to ultraviolet light for several minutes. It is usual to remove the
integrated circuit from the circuit board to do this. EPROMs have a limited lifetime
due to wear on the pins (unless zero-insertion-force sockets are used) and because their
ability to be erased diminishes with age.

Executable Program Module: The output of the link process (g.v.) is a single file of
machine code nstructions. When placed in the computer’s memory at the correct lo-
cations (specified in advance), these instructions permit the computer to execute a
program.

FIFO: First-in, first-out. This term refers to a common data structure. One place
this data structure is used is in the buffer on the bubble memory controller. That
bufler serves as an intermediate storage area between the bubble memory and the user.
For example, when data are being read from the bubble memory by the user, they are
retrieved from the bubble memory by the bubble memory controller and placed in the
FIFO butter. Concurrently, data are being removed from the bufler and sent to the
user. The first characters of information to arrive in the buffer are the first to leave,
hence the first in are the first out.

Firmware: This term describes the computer programs which are stored in non-
volatile memory, such as ROM (q.v.)

Handshaking: When two devices communicate, they employ a protocol which speci-
fies which device does what, when. This protocol is referred to as “handshaking”.

Hexadecimal: Numbers to the base 16. It is customary to use the usual digits (0-9)
as well as the letters ‘A’ (or ‘a’) through ‘F’ (or ‘'), for the 16 distinct symbols required
in this system. The C programming language by convention uses the prefix "0X' (or

xvi

‘OX’) to make it clear that the appended characters represent a hexadecimal quantity.
For exanmple,

2a,=0x2a=2,,x 16" + 2,4 x 16" =2 x 16' + 10 x 16° = 42.

Input/Output space: The Z-80 and the essentially similar NSC800 provide a separate
set of addresses for input and output devices. Certain instructions are reserved for
these addresses, which can run from 0x00 through Oxff. They do not interfere with the
corresponding memory address space (q.v.)

I/O: Input or output.
I/O Space: See Input/Output Space.

Latch up: A comparator will ordinarily produce a high voltage when the non-
inverting input receives a higher voltage than that present on the inverting input.
Similarly, it will ordinarily produce a low voltage when the non-inverting input re-
ceives a lower voltage than that present on the inverting input. Some comparators
are susceptible to the phenomenon called “latch up”. This entails a failure of the
comparator to change its output according to the usual rules. Instead. the output
signal will remain stuck at one value without regard to changes at the input. This
feature is highly undesirable. as it means that the comparator is ne longer performing
as it should.

Library: The output of the compilation or assembly steps is an object module. Se-
veral of these can be stored in a hbrary for convenience. During the link process. the
linker can look in the modules stored in the library for definitions of objects whose
names it does not recognize. The alternative to putting modules in a librarv is to
specifv them individually to the linker, which is somewhat less convenient.

Linker: The hinker is responsible for combining the object modules which comprise
a complete program, and placing them in suitable memory locations. Object modules
mav include references to other modules or identifiers defined within other modules.
These references must ultimatelv be resolved to memory addresses within the com-
puter which will run the executable program. It is the job of the linker to perform this
address resolution. To link a program is to request the linker to construct an exccut-
able program. and res.ive all unknown addresses. The object modules may be ob-
tained by the linker from either of two sources: from a librarv or {from individual files
containing only one module each. The output from the linker is a single file contain-
ing an cxecutable program module (g.v.)

Memory address space: The Z-80 and the essentially similar NSC800 permit address-
ing memory wich addresses in the range 0x0000 through OxfTIf. Most instructions
which use addresses, including stack instructions which do not explicitlv address
memory, use this space. There is another space of addresses called the inpur outpur
space (q.v.)

Module: In the C programming language, many functions may be grouped together
in a single file of source code. These are considered to comprise a single module, for
they are compiled as a unit and the resultant object code is stored in a single file, an
object module /q.v.;. Similar remarks hold when the source code consists of assembly
language instructions, rather than instructions in the C programming language. In-
deed, this concept is applicable irrespective of the programming language used to cre-
ate the executable program. There are several advantages to building modules in this
fashion. Chief among them is the separation of sections of a program according to

Xvii

their functional characteristics. This permits testing one module independent of test-
ing any other module. It also facilitates the use of fully debugged programs for other
applications at a later date.

Modulo: Consider a number x and another number m, cailed a modulus. The number
x taken modulo m is written x mod m and it is defined to be the least positive number
n such that x =k x m + n for some integer k. As an example, 5mod 6 = 5 because
O0x6+5=25. Similarly, 9mod 6 =3 because 9=1x 6+ 3, and —2 mod 6 =4 since
—-2=-1x6+4. Although we can also write =2 = -2 x 6 + 10, —2 mod 6 # 10 be-
cause 10 is not the least positive number which can be found to satisfv the equation.

Nibble: A nibble is a half byte. This is a typical example of humor in the computer
business.

NSC810A: An integrated circuit from National Semiconductor which includes two
eight-bit ports, one six-bit port, 128 eight-bit words of RAM (g.v.) and two 16-bit bi-
nary timers.

Object Module: An almost-executable computer program. The reason it is not fully
executable is that not all addresses within it have been resolved vet. nor has the linker
established what addresses should be assigned to relocatable programs. Assembilers
and compilers produce object modules. Linkers convert them into executable form
by resolving the unresolved addresses and assigning all relocatable code to its final
location.

Parametric Registers: The Intel BPK 5V75A Four-Megabit Bubble Memory includes
five parametric registers which must be loaded prior to attempting to perform input
from or output to the bubble memory. Two of the five comprise the block length
register, which defines both the number of bytes contained in a page of bubble mem-
orv {¢.g., 64), and the number of pages to be transferred from bubble memory to the
bubble memory port or vice versa at a time. Two more specifv at which of the §.192
pages in the bubble memory to start the transfer of data. The last, the “enable” reg-
ister, primarily defines whether operation is to be interrupt-driven or not.

Project G-313: This is the designation of the NASA project comprising the Vibro-
acoustic Experiment.

PROM: Programmable ROM (g.v.) These ROMs can be written to once by the user,
but once written, their contents can never be modified.

Quotation Marks: In C, double quotation marks (") are used to enclose character
strings. Internally, the C compiler always places an ASCII NUL character (its
hexadecimal representation is 0x00) at the end of a string. Single quotation marks
(" ") are used to enclose a single character. Internally, the C compiler does not append
an ASCII 0x00 to a single character.

RAM: Random access memory. This refers primarily to memory which can be writ-
ten to and read from repeatedly. It commonly is volatile, i.e., its contents are de-
stroved when power is removed.

ROM: Read-only memory. This term is a bit of a misnomer. Obviously a memory

which can never be written to would be of little value. Generally, it is much more

difficult to modify the contents of a ROM than it is to modify the contents of a RAM.
ROM{s come in several varieties:

Xvii

l. A mask-programmed ROM receives its data at the factory according to a
customer's specification when it is manufactured.

2. A PROM (g.v.) is programmed once by the user.

3. An EPROM (g.v.) can be programmed repeatedly, but must be erased by ultra-
violet light between uses.

4. An EEPROM (g.v.) also can be programmed repeatedly, but it can be erased
electrically.

RS-232C Serial Interface: This interface is also known as the E/A standard interface
It was developed in 1969 by the Electronic Industries Association in conjunction with
the Bell system, as well as independent manufacturers of computers and modems.
Data are transmitted serially using two voltage levels. + V, represents a binary 0,
=V, represents a binary 1.

The voltage V, can lie within the range [3,25]V. While the RS-232C defines the
electrical characteristics of the interface, the functional description of the interchange
circuits. and lists standard applications, it is silent on the subject of physical connec-
tors. Usually, however, DB-23 connectors having 25 pins are used. The tables in
APPENDIX 1. RS-232C INTERFACE PIN CONNECTIONS on page 224 show
the pin connections for the RS-232C interface. [Ref. 2: p. 683]

SSDR: Solid State Data Recorder. This device stores audio data in magnetic bubble
memories. It accepts commands analogous to those selected by pushing a button on
a conventional. reel-to-reel tape recorder. For example, the commands PLAY and
RECORD exist. However, access to the data can be random.

Static: In C. most variables are dinamic (g.v.) They can be made szatic by the inclu-
sion of this kevword in their declarations. This causes them to become permanent.
Thev are not then created when the function in which they are declared starts to exe-
cute. They are created at the time of compilation. Thev do not lose their contents
when that function's operation ends. The contents of the storage locations assigned
to them remain intact until the next time that function tries to access that variable.

UART (Universal Asynchronous Receiver-Transmitter): A common integrated circuit
which provides asynchronous communications between two hardware devices. We use
it to implement an RS-232C serial interface between the controller hardware and a
terminal.

Volatile Memory Storage: Conventional RAM (g.v.) loses its contents when power is
removed. This property is called volatility. By contrast, magnetic core and bubble
memories are non-volatile. For that matter, printed pages are also non-volatile
memories.

Voltage Controlled Oscillator (VCO): The VCO operates a loudspeaker in the exper-
iment during the sweep phase. The frequencies are increased incrementally between
35 Hz and 785 Hz in 1 Hz increments.

xix

ACKNOWLEDGEMENTS

This thesis would never have been written without the steady support and encour-
agement given me from the very beginning by my wife, Diane. For this [am forever
indebted to her. I must also give special thanks to Professor Rudy Panholzer, who
guided my efforts from the beginning; Professor Steve Garrett, for teaching me about
analog electronics; Mr. David Rigmaiden, for tireless advice on technical matters; CPT
Frank Mazur, USMC, for taking me under his wing at the start of my involvement in
the project: CAPT Ron Byrnes, USA, without whose patient and calm help the bubble
memory still would not be working properly: Mr. Larry Frazier, whose vast knowledge
of Script, GML, and GThesis, and continual willingness to answer any and all questions
about them. were of enormous help to me; Dr. Otto Heinz for his guidance throughout
my course of study; CDR Steve Hannifin, USN, and CDR Skip Braden, USN, my for-
mer Commanding Officers, who stood by me when [needed them: and last. but far from
least, to the United States Navy and the people of the United States of America for
permitting me the great privilege of studying at the Naval Postgraduate School.

I. INTRODUCTION

Since it began flying into space in April, 1981 the Space Shuttle has made it much
easier to get payloads into space. Although the shuttle was grounded because of the
tragic explosion of the Challenger on January 28, 1986, flights resumed in October, 1988.

A. GET AWAY SPECIAL (GAS)

In 1976 the National Aeronautics and Space Administration (NASA) established the
Get Away Special (GAS) program [Ref. 3: p.11]. The purpose of this program is to
permit individual experimenters to have room on the Space Shuttle for their experiments,
provided there is no undue interference with the rest of the mission as a result. To pre-
clude such interference, NASA therefore imposes a number of constraints on these ex-
periments. Among these are

1. They must contain their own power source, heating., data handling facilities, and
so on [Ref. 4: p.8}.

2. No more than three external switches mav be provided for operation by crew
members. Of these, one must be devoted to removing all power from the pavload
(Ref. 3: p. 28].

The Space Shuttle is subject to powerful acoustic vibrations during launch. In the
past, minor breakage of crystals and circuit boards has resulted [Ref. 3: p.i1}. It is
thought that the vibrations are responsible for this damage, and that some regions of the
cargo bay are more susceptible to damage than others. Acoustical analysis of the sound
waves which cause these vibrations could reveal where the best and worst locations are.

Several early GAS experiments carried conventional reel-to-reel tape recorders and
were intended to record the acoustic waves in the cargo bay for subsequent analysis.
However, the analysis was flawed for several reasons [Ref. 5: p. 15]. Among these were:

1. The microphones were mounted close to the bulkhead of the cargo bay, within a
partial enclosure. Thus the data might have been erroneous.

2. The data recorded by the microphone may have been contaminated by interaction
between the microphone and its isolation system.

3. The acoustical waves in the forward third of the cargo bay were not recorded.

Furthermore, astronauts were too busy at launch time personally to initiate the exper-
iments Instead, the experiments included circuitry to detect the roar of the main engines
and trigger the commencement of the experiment [Ref. 6: p. 11]. There is good reason

to doubt the validity of the analysis of acoustic waves whose collection was itself trig-
gered by the occurrence of those same waves. As a result of all these factors, the anal-
ysis so far has been ambiguous.

B. THE VIBRO-ACOUSTIC EXPERIMENT

The Space Systems Academic Group at the Naval Postgraduate School plans to
conduct an experiment as NASA project G-313 to obtain improved acoustical meas-
urements in the cargo bay of the Space Shuttle during launch. In the remainder of this
thesis, we shall refer to this project as the Vibro-acoustic Experiment. The reader is re-
ferred to [Ref. 7] for a general overview of the experiment.

The purpose of this thesis is to describe the software and some of the hardware
which controls the Vibro-acoustic Experiment. At times this thesis will merely describe
the work we have done. At other times, it will prescribe what to do to achieve various
ends. Thus 1t will serve not merely as documentation of what has been done, but it will
also serve as 2 manual for those who might wish to elaborate on this earlier work.

The majority of the work performed by the author had to do merely with the control
of the experiment. However, the marched filter (described in Chapter 111. THE
MATCHED FILTER on page 21) was redesigned by the author and is completely de-
scribed in this thesis.

A great deal of the hardware and software created to control the Vibro-acoustic
experiment is very general in nature, and would apply without change to other exper-
iments. We will attempt to indicate which components have general applicability. The
hope is that future applications will benefit from this approach. and will be spared the
need to build and program a controller from scratch. More information on the
general-purpose controller hardware we use in the Vibro-acoustic Experiment can he
found in Chapter II. CONTROL HARDWARE on page 10. The software is described
in general terms in Chapter [V. DESIGN OF THE CONTROL SOFTWARE on page
43.

C. DIFFERENCES FROM EARLIER EFFORTS
Like earlier experiments, this one is housed in a GAS canister. It differs from them,
however, in several key respects.
1. Isolation of Microphones
The experiment uses microphones housed in a mounting designed at the Naval

Postgraduate School to isolate them from vibration. This is intended to reduce the

contamination of the recorded acoustical waves by structural vibrations. This micro-
phone arrangement is described in Stehle {[Ref. 3].
2. Solid State Data Recorder (SSDR) Using Bubble Memory
Conventional reel-to-reel tape recorders are supplanted by a recorder using
magnetic bubble storage. This recorder was also designed at the Naval Postgraduate
School and has the following advantages over conventional recorders.
1. It contains no moving parts, so is less prone to mechanical failure.

2. It permits random access to data, not possible with tape. While such a capability
is commonplace with disk storage, disks do suffer from mechanical breakdown.
Also, theyv are vulnerable to errors when external accelerations occur, as they do
during a launch. This is less problematic in the case of bubble memories.

3. Bubble memory is non-volatile, that is, its contents are not destroved when power
is removed. Thus battery power is not required to keep the stored data available.
Slightly offsetting this advantage is the fact that power must be removed in a con-
trolled fashion, and specified temperature limits must be maintained.

The magnetic bubble recorder is described in Frey [Ref. 8].
3. Microprocessor Control of the Experiment

To operate the experiment. another group at the Naval Postgraduate School
built a single-board, microprocessor-based controller. This general-purpose controller
uses a National Semiconductor NSC800 microprocessor (roughly equivalent in function
to a Zilog Z-80). This controller, as it was originally conceived, is described in Wallin
(Ref. 3]. Irom a programmer’s standpoint, the controller has the characteristics de-
scribed in Chapter II. Section A. Standard Controller on page 10.

The controller will be responsible for:

1. activating all subsystems at the appropriate time;

2. monitoring execution of the experiment;

3. keeping a log of significant events and the dates and times at which they occurred.
This log is stored in the controller’s bubble memory module;

4. recording temperature and voltage readings while the shuttle is in space; and

5. ensuring that the bubble memories do not get too cold. This is done by
intermittently operating the heater subsystem to maintain a temperature above

10°C . [Ref. 1: p. 3]
In addition to the obvious functions called for in controlling the experiment, the soft-
ware also contains a menu-driven diagnostic subsystem to provide for testing on the
ground. (See APPENDIX B. CHOICE OF A SOFTWARE DEVELOPMENT SYS-

TEM on page 83 for a general description of the several software development systems
we have used.)

D. PROCEDURAL OUTLINE OF THE VIBRO-ACOUSTIC EXPERIMENT

In this section we sketch an outline of the operation of the Vibro-acoustic Exper-
iment. The flowcharts in Chapter IV, Section 2. Performing the Experiment on page
46 show the procedure which the experiment follows. A synopsis of this procedure is
provided here.l The experiment begins to operate when the ground crew or astronauts
turn on a switch in the cabin, causing power to be applied to the GAS canister which
houses the experiment. With power applied, the microprocessor comes to life. Its first
task is to initialize the programmable hardware ports and timers. It then has to decide
whether or not to perform the complete experiment or an abridged version of it. The
need for such a decision will become apparent presently. For the moment we will con-
fine our attention to the unabridged experiment.

1. Sweep Phase

Once the cargo bay has been loaded, the ground crew will activate the exper-
iment for about an hour to let it perform the = . , phase. During this phase, the cargo
bay is irradiated with a sequence of acoustic tones of known frequencies and the acoustic
response of the enclosure is recorded by the Solid State Digital Recorder (SSDR). After
the mussion, analyzing this data [Ref. 9] and comparing it to the echoes recorded during
launch will reveal the locations of the regions most and least prone to damage from vi-
bration. This phase is the longest, and lasts 13 minutes.

2. Detection of the Auxiliary Power Units (APUs)

The Space Shuttle’s Auxiliary Power Units (APUs) are jet turbines used to op-
erate control surfaces during launch and recovery of the shuttle. The APUs start to
operate around five minutes before launch. Because they emit a characteristic frequency
at 600 Hz, we can use a matched filter to detect their acoustic signature
[Ref. 6: pp. 15-18]. When the matched filter detects this signal, it knows that launch
is imminent, and it is time to start recording the sounds which occur prior to launch.
Thus we will record the sounds before, during, and after launch. By not waiting for the
roar of the main rocket engines before starting to record the ambient noise, we will avoid
the problem mentioned in Chapter I, Section A. Get Away Special (GAS) on page 1.
The data collected by this means should be much more accurate.

1 See Chapter IV, Section B. Operation of the Vibro-acoustic Experiment on page 45 for
complete details.

Since there exists the possibility that for some reason the matched filter will fail
to detect the APUs, the experiment includes two backup systems.

1. The Vibration-activated Launch Detector will detect the vibrations associated with
launch.

2. A second backup system will use two barometric pressure switches to detect the
drop in atmospheric pressure which occurs as the Space Shuttle rises. These
switches will be placed in a redundant, parallel configuration. Thus, if either one
or both of them work, the drop in barometric pressure will be detected.

Neither of these systems can detect operation of the APUs. However, if either one
should detect a launch, the control program stops waiting for the APUs to come on and
switches immediately to the /aunch phase.

If the matched filter successfully detects the APUs but the Vibration-activated
Launch Detector fails to detect launch, the barometric sensor will cause the experiment
to switch to launch phase, albeit a little late.

[t would be unfortunate if the matched filter failed to detect the APUs, for then
one of the primary advantages of the Vibro-acoustic Experiment over carlier efforts to
record acoustical noise in the Space Shuttle would disappear. It would be doubly un-
fortunate if neither the matched filter nor the vibration detection subsvstem worked. for
then no data would be recorded until well after launch. If anv one of the three syvstems
works as designed, then the experiiment will acquire at least some data.

3. Scroll Phase

If the matched filter detects the APUs, the control program will place the Solid
State Data Recorder (SSDR) into scroll mode. In this mode, the SSDR uses a subset
of its bubble memory for recording the ambient noise prior to launch. The fraction of
memory dedicated to this purpose permits at most 110 seconds of recording time. Once
this memory is used up, the SSDR will start re-using it from the beginning.Z .\s a result
of this mode of operation, roughly two minutes of pre-launch noise will be recorded,
along with the noise of the ignition of the main engines.

4. Launch Phase

Either the vibration detection subsystem or the barometric sensors can trigger
detection of a launch. When a launch is detected, the control program puts the SSDR
into launch mode. The purpose of this mode is to record the noise after the launch be-
gins. In launch mode, enough memory is dedicated to permit about two minutes of

2 In effect, the SSDR is writing onto a continuous, looped scroll, hence the name of this mode
of operation.

ambient noise to be recorded.3 Once this memory is exhausted, the SSDR will signal the
control program that it has finished operations.
S. Post-launch Operations

After the SSDR has signalled completion, the Vibro-acoustic Experiment has
finished gathering all the acoustical data it needs. The controller will continue, however,
to monitor and record temperature in the GAS canister and record this information in
its own bubble memory module. It will also monitor and record voltage levels of each
of three power supply batteries. If these should fall below 8.5V, it will halt. This pre-
vents loss of data in the bubble memory due to insufficient voltage and current levels.

The basis for choosing 8.5V follows. Each individual cell is rated for 2.0V.
There are five of these cells in the 10 V stack which powers the bubble memory. If any
cell drops to 1.81V or below, it is considered to be below the operating threshold. Five
such cells generate 9.05V. The bubble memory itself can operate on as little as 3 V.
We know that the batteries are losing power when the voltage falls below 8.3 V, but we
still have a margin of 3.5 V above the voltage required to operate the bubble memory.
(The margin is reduced slightly due to the presence of § V voltage regulators in the cir-
cuit, but it is still ample.) It is therefore reasonable to halt operations if the voltage falls
below 8.5V .

Also, if the temperature of the bubble memory falls below 10°C, it is below the
minimum operating temperature, and we will suspend operation of the bubble memory
until the temperature returns to 10°C once more. Likewise, if the temperature should
rise above 33°C, it is above the maximum operating temperature, and bubble memory
operations will be suspended until the temperature drops within the operating range
again.4 [Ref. 1: Chapter 1. p. 3]

6. Abridged Experiment

NASA has balked at the idea of our performing the sweep phase. They are

concerned over the possibility that the loud sounds generated during the sweep might

damage other pavloads or frighten technicians. They also are reluctant to remove per-

3 Since the shuttle's cargo bay is not pressurized, the air will leak out as the outside pressure
drops. After two minutes, there will be no appreciable atmosphere left inside the cargo bay, and
all sound will have ceased.

4 These checks are only performed during the post-launch phase, which begins within two or
three minutes from the time of launch. It is unlikely that NASA would launch the shuttle if the
outside temperature were below 10°C, and we do not anticipate that the temperature will fall
appreciably within the first three minutes of flight.

sonnel from the vicinity of the shuttle during that phase. They are equally reluctant to
require those personnel to wear hearing protection during the siweep.

Those arguments seem specious to us. It strikes us as unlikely that damage to
equipment might result from the sweep but not from the rocket motor noise during lift
off. We cannot see the reason why personnel whose hearing might be damaged during
the sweep cannot wear hearing protection. While we can still perform an analysis of the
recorded data without first doing a sweep, it is likely to produce less useful results.

We have decided to proceed as we wanted to originally, that is, to design an
experiment which would do everything we want. We have added an additional decision
point to permit the abridged experiment to take place. This shortened experiment would
simply turn on the recorder when the APUs were detected or when launch occurred, and
we would hope for the best. There would be no sweep, no scroll, and no launch phases:
there would only be a record phase, once the APUs or a launch were detected.

Once NASA sees that the abridged experiment works, that the analysis provides
good results, and that permitting the unabridged experiment will vield even better data,
we hope that they will relent and permit us to fly the experiment again in the unabridged
mode.

E. IRREGULARITIES

What happens if the power fails temporarily and then is restored? This might hap-
pen if the power switch is inadvertently switched off by the ground or flight crew, or
through some equipment malfunction. Upon the restoration of power, the micro-
processor must decide where in its procedure to resume execution. There are several
cases to consider.

1. The sweep phase has never been initiated, nor has a launch occurred. The correct
action is to start at the beginning.

2. The sweep phase has been initiated. [t is not known whether or not it ever was
completed, but a launch has not occurred. The correct action 1s to skip the sweep
phase and wait for some indication of a launch. The sweep creates a very loud
noise which would be hazardous to ground personnel if it were permitted to occur
at other than a scheduled time. Since this time is not known at present, and never
is firmly enough known in advance to be programmed into the computer, we can-
not risk running the sweep phase if it is interrupted by a power fault.

3. The sweep phase has been initiated (and presumably completed), the APUs are on,
but no indications of a launch are present. The correct action is to enter scroll
mode. If it was already in progress when the power fault occurred. it will be re-
started. This is all right, since no vital information will be lost by this procedure.

4. The sweep phase has been initiated (and presumably completed) and conditions of
a launch are present but the barometric switch has never been tripped. The correct

action is to assume we are just beginning a launch and to initiate /aunch mode.
This creates a risk that recordings of the moment of launch would be lost if a power
fault occurred between the moment of launch and the triggering of the barometric
switch as the spacecraft ascends. There is no obvious way entirely to eliminate this
risk.

5. The sweep phase was initiated (and presumably completed) and the barometric
switches were activated at some earlier point. This implies that the power fault
took place after the activation of the barometric switches, that is, after launch. The
correct action is to assume that launch data was successfully recorded and to initi-
ate the post-launch monitoring operations.

F. OTHER APPLICATIONS

The controller hardware is sufficiently powerful that it could easily provide control
for other applications. In particular, many spaceborne applications could be operated
by it.

In the course of developing the control software, we had to create support routines
to take care of a great many mundane functions. In computers with operating systems,
these functions are typically provided by the operating system. The user has merely to
know about them and use them.

The controller we use has no operating svstem, so we had to create many low-level
functions, e.g., one which converts a hexadecimal number to a character string repres-
enting that number.

At a higher level, we wrote subroutines to display text on a ternunal, operate a
bubble memory, operate a real-time clock, and control various external devices through
the 44 input and output lines provided with the controller.

By using the low-level subroutines, and by organizing an application’s software in
a similar manner, much of the most tedious and uninspiring work entailed in producing
a control program for this controller hardware could be avoided. This would leave more
time to devote to the real purpose of the application. In an environment with few people
available to do the work, such economy is very attractive.

Another consideration is the lack of a need to use assembly language in program-
ming the controller. In the very few places where it was required, we used it. Along
with the large collection of C language subroutines of general applicability, the routines
we have already provided in assembly language should suffice for almost all run-of-the-
mill work.

In one area we were ourselves compelled to abandon the use of C language source
code and switch to assembly language code. We initiallv hoped that only the start-up
code, the input routine, the output routine and the software delay routine would require

the use of assembly code. We assumed we could input from and output to the bubble
memory using compiled C language source code.

This assumption turned out to be incorrect. We needed a data transfer rate of
16,000 bytes per second [Ref. 1: Chapter 1, p. 3], but could only attain around 3,000
bytes per second. Consequently, we had to replace a small section of C code with as-
sembly language source code. Even this was necessary only because we used a prototype
bubble memory board with a buffer whose size was inadequate to handle data transfers.
While this buffer provided only 40 characters of space, we needed 64.

When speed becomes paramount, assembly code may be necessary, since it can be
tailored to the job at hand and so produce very efficient programs.5 For many applica-
tions, however, speed is not critical. It ordinarily is foolish to waste time achieving in
assembly language what can be done much more quickly using a high-level language.
Only if you cannor achieve the desired performance with a high-level language. must vou
use assembly language.

Irrespective of whether some portion of an application does or does not demand
efficient code (written in assembly language), for most applications the majority of the
code can be written in a high-level language such as C. Many applications. too, neced
no more facilities than those provided in the Vibro-acoustic Experiment. In such cases,
building on the work presented in this thesis has very clear advantages.

5 Nonetheless, some optimizing compilers surpass quite competent assembly language pro-
grammers in efficiency.

II. CONTROL HARDWARE

The controller we use in the Vibro-acoustic Experiment is based on the NSC800
microprocessor. For all practical purposes, this is functionally equivalent to the Zilog
Z-806 [Ref. 10]. Figure 1 on page 11 is a block diagram showing the major components
of the system. To the left of the microprocessor appear those peripherals which ordi-
narily fall under the control of the standard controller. We discuss these peripherals and
their capabilities in Section A. Standard Controller below. One can connect an assort-
ment of devices to the 44 input and output lines available on it. Other applications than
the Vibro-acoustic experiment could use this bare-bones controller for their own pur-
poses.

To the right of the microprocessor appear those peripherals which are peculiar to
the Vibro-acoustic Experiment. We discuss these peripherals and their capabilities in
Section B. Additional Controller Hardware on page 14 below.

A. STANDARD CONTROLLER
1. NSC810A RAM-1/O-Timers

Two NSC810A RAM-I O-Timer units provide four eight-bit ports and two six-
bit ports. These provide 44 bits of input and output capabilitv. There also are two
timers on each device. One of ecach pair is completelyv independent of the data ports: the
other, if used, reduces the number of available pins in the six-bit port tc three. We have
corfigured the system such that one of the latter kind of timer is unavailable, since we
have dedicated the data lines with which it interferes to other purposes. The two timers
which do not conflict with any data lines at all are dedicated to providing:

1. A 153.6 kHz signal to the IM6402 Universal Asynchronous Receiver Transmitter
(UART) where it is divided by 16 to vield a 9600 BAUD clock for serial data
transmission.

2. A 614.4 kHz clock which is provided to the ADC0816 Analog-to-Digital Converter.

Thus one of the four timers is available for other uses.
We shall hereafter refer to the two devices as NSC810A #1 and NSC810A #2
respectively. The NSC810A reference manual {Ref. 11] refers to the eight-bit ports by

6 The NSC800 includes several instructions not included with the Z-80. Since the Z-80 is the
better-known device, we have not used any of the added instructions.

10

" - —
ooy
to Micro-
Digital (A/D) °";","
Converter {
|'3) Power
» -
jiid
8=
Solid
State
Status Data
Con » Recorder Power
{SSOR)
[On-toard |
Anasiog Micro-
Dl‘?lll Matched phone
(A1D) | Vonsees s AP Ostection| Filter
Converter | Temperatures Power
Butble Vibration-
M:;novy Dasta Micro- Activated
e " unch
s Status ”‘:’:;:“ Launch D‘: ector Power
Commands Controtter Dstection
Real Barometre
Time Date & Time Pressure
Clock 3 Post-launch Switch
Osetaction
— - = - = -—
: 1
Terminal 1 Voltage
' (CAN Dats) Controlied Power
! Statvs | Oscillator |
! !
! t Speaker
t Present only during '
' ground test '
Hoater
R Subsystem Powel
2
3
"3
Power
Power Lines
Control
Subsystem 7s

Figure 1.

Block diagram of major components of the Vibro-acoustic Experiment.

11

the letters A and B, and to the six-bit port by the letter C. In the rest of this thesis, when
we wish to distinguish between ports on NSC810A #1 and NSC810A =2, we shall ap-
pend a subscript to the port’s letter, e.g., A, is NSC810A #1, port A.

NSCS8I10A #1 uses port addresses 0x00 through 0x19.7 NSC810A #2 uses port
addresses 0x20 through 0x39.8

General information on programming the NSC810A can be found in [Ref. 11].
We present the specific manner in which these devices have been programmed for the
Vibro-acoustic Experiment in Section A. Major Subroutines and Functions on page
108.

2. On-board Analog-to-digital Converter

An eight-bit, 16-channel. National Semiconductor ADCO0816 analog-to-digital
(A D) converter permits the monitoring of voltages and temperatures at various points
within the experiment. It can be mounted right on the microprocessor-based controller
board. The device is connected starting at input. output space address 0x80. Conversion
of an analog input to a digital number is signalled to the control program by the exist-
ence of a 1 in bit 3 of port C,.

3. Bubble Memory Module for the Controller

Devoted to the use of the controller board is a 512 KByvte Intel BPK 5V75A
Four-Megabit Bubble Memory Prototype Kit. The control program will maintain a log
in this memory of all actions it takes during the experiment. The information will in-
clude a code signifving the action taken, the time and date of that action, and the current
temperature and voltage readings.

After launch, the Vibro-acoustic Experiment is over. The control program then
uses the log solely for the purpose of recording temperatures and voltages.

Port address 0x40 provides access to the bubble memory. There are 8192 pages

of 64 bytes per page. Pages of the bubble memory can be specified at random by num-

7 The term “port” is somewhat ambiguous. The NSC810A reference manual [Ref. 11] refers
to a collection of pins within an NSC810A integrated circuit as a port. This particular device
contains three ports: A, B and C. In common parlance, however, the term port refers to a par-
ticular address in the input-output address space (1,0 space) of the Z-80. This space spans ad-
dresses from 0x00 through Oxff. We might say, for example, that we perform an input operation
from port Oxla. This is equivalent to saying we input a byte (character) from [O space address
Oxla. We shall seldom attempt explicitly to state which use is intended. The meaning may gener-
ally be ascertained from the context.

8 See the discussion on hexadecimal notation in the Glossary.

12

bers from O through 8191. Port address 0x41 provides control information for this
memory device.

The bubble memory’s reset line should be brought low by placing a 0 in bit 5
of port C, before applying power to or removing power from the bubble memory. It is
important to wait at least 50 ms after applying power before attempting to initialize the
bubble memory [Ref. 1: Chapter 4, p. 3).

Power can then be applied to the bubble memory by putting a ! in bit 4 of port
C,. Putting a 0 there removes power.

Details of the operation of this memory and the meaning of the control byte
information are in [Ref. 1]. We describe the manner in which we have programmed the
bubble memory to support the Vibro-acoustic Experiment in Section A. Major Sub-
routines and Functions on page 108.

4. Real Time Clock

A National Semiconductor MM58167A real time clock makes it possible to re-
cord in the log of events the dates and times of all actions taken. We also use this device
to limit the amount of time the control program waits for various events to occur. If the
event does not occur for some reason, the control program decides to stop waiting.

For example, once the Auxiliary Power Units (APUs) are detected, there is a
window of about seven minutes in length. If launch does not occur within this window,
the launch will be scrubbed since the APUs will no longer have sufficient fuel. We can
therefore regard the experiment as having been aborted if this amount of time passes
without a launch. We use the real-time clock to detect the passage of this period of time.

5. RS-232C Serial Input/Output Port

An RS-232C interface provides communication with a serial device such as a
termuinal. This makes it feasible to monitor and control the system on the ground. By
connecting a terminal to this interface, the user has access to an extensive, menu-driven
diagnostic subsystem. (This menu subsystem is dormant if there is no terminal at-
tached.) No intelligence currently is required on the part of the terminal: it is purely a
display device.9 Port address 0xe0 holds control information to and from the serial de-
vice. Port address OxcO funnels data either to or from the device. Table 1 on page 14
shows the use of the bits of the control port.

9 Mr. David Rigmaiden of the Space Systems Academic Group at the Naval Postgraduate
School has proposed encoding the diagnostic messages and using an intelligent terminal to display
the corresponding human-readable messages. However, no one has yet done any work on this.

13

If there is a terminal connected to the RS-232C Serial port at addresses 0xco
and Oxe0, then bit 3 of port C, will be a 1. This permits the control program to distin-
guish diagnostic operation on the ground (when there will be a terminal attached) from
actual performance of the experiment (when there will notr be a terminal attached.) As
can be seen in Figure 1 on page 1}, the Vibro-acoustic Experiment will not use a ter-

minal when it is in space.

Table 1. ASSIGNMENT OF BITS IN THE RS-232C SERIAL INTERFACE
PORT: This port uses address 0xOe for control information and 0x0c for

data.
. Direction of .
Bit Data Flow Meaning
0 Input 0 if the attached device can accept output inifor-
P mation. 1 othenwise,
1 Input éri‘f itsfée attached device has data available, 0 oth-

B. ADDITIONAL CONTROLLER HARDWARE

The Vibro-acoust.. +_..periment uses several subsystems which are not a part of the
standard controlle.. iost of these subsystems appear to the right of the microprocessor
in the block di.gram in Figure 1 on page 11. The only one which does not is the Power
Control Subsystem, which is drawn below the microprocessor. These subsystems have
the following functions:

1. Analog-to-digital Converter Subsystems

Three A D converters convert the analog acoustical signal detected by a set of
three microphones into the digital format required by the Solid State Data Recorder
(SSDR). The design and operation of the SSDR is provided in [Ref. 9].

2. Solid State Data Recorder (SSDR)

The SSDR is comparable in function to a conventional reel-to-reel tape re-
corder. Unlike a standard tape recorder, it is not limited to sequential operation,; it can
access data randomly. The operation of the SSDR is more fully described in [Ref. 8].

To issue a command to the SSDR, place its code in port A, on NSC810A #1,
located at I, O space addresses 0x00 through 0x19. The SSDR will place a status code
reflecting its operating state in port A,. Table 4 on page 17 defines the command codes

14

Table 2.

BIT ASSIGNMENTS FOR READING POWER SUBSYSTEM RELAY
SETTINGS: The position of relays mayv be determined by reading port
B, (on NSC810A #2), which is located at I O space addresses 0x20 through
0x39.

Direction
Bit of Data Value Meaning
Flow
0 Not used.
1 Input 1 The Solid State Data Recorder (SSDR) is on
P 0 The SSDR is off.
1 The Voltage Controlled Oscillator (VCO) is ofl.
2 Input - ,
v It is off.
1 The Analog to Digital Conversion (A D) cir-
3 Input cuit is on.
0 It is off.
The Matched Filter , Vibration-activated
1 Launch detector, and Barometric Pressure
4 Input Switches are on.
0 It is off
5 Input 1 The heater circuit is on.
P 0 It is off,

for the SSDR. Table 5 on page 17 defines the status codes the SSDR can return to the

control program. The following SSDR commands are of particular note:

Sweep

Scroll

Launch

Record 12.5 minutes of pre-determined frequencies emitted by the Voltage
Controlled Oscillator (VCO) prior to launch.

Record up to 535 seconds of ambient noise during the five minutes or so
between the time the Auxiliary Power Units (APU's) come on and the time
of launch. In this mode, the SSDR will continually re-use the same portion
of SSDR memory. There are two sections of memory devoted to this pur-
pose, and use alternates between them. Each can hold up to 55 seconds of
ambient noise. When the SSDR is commanded to enter /aunch mode, the
memory section currently in use will be filled and then the SSDR will switch
over to that section of memory devoted to recording post-launch noise.

The experiment’s control program orders the SSDR to enter launch mode
as soon as the Space Shuttle launches. This mode lasts for two minutes,
which is about the time it takes to evacuate the air from inside the
shuttle's cargo bay. During this mode, the SSDR records ambient noise.

Table 3. BIT ASSIGNMENTS FOR CONTROLLING POWER SUBSYSTEM
RELAYS: Relays may be controlled through port B, (on NSCSI10A #1),
which is located at 1O space addresses 0x00 through 0x19.

Direction
Bit of Data Value Meaning
Flow
1 Turn on the relays specified in the other bit
0 Outout positions.
P 0 Turn off the relays specified in the other bit
positions.
i Operate the Solid State Data Recorder
(SSDR).
1 Output :
0 Do not operate the Solid State Data Recorder
(SSDR).
] Operate the Voltage Controlled Oscillator
(VCO).
2 Output -
0 Do not operate the Voltage Controlled
Oscillator (VCO).
1 Operate the Analog to Digital Conversion
. (A D) circuit.
3 Output —
0 Do not operate the Analog to Digital Conver-
sion (A D) circuit.
1 Operate the Matched Filter (including
J Output accelerometer and barometric switch).
0 Do not operate the Matched Filter.
< 1 Select the heater circuit.
5 Output ;
0 Do not select it.

As can be seen in the flowchart in Figure 22 on page 50, most of the experiment

is devoted to the operation of the SSDR, that is, to placing it in the mode appropriate

for the current phase of the Space Shuttle’s mission.

3. DMatched Filter

As mentioned in Section 2. Detection of the Auxiliary Power Units (APUs)

on page 4, a matched filter will detect the characteristic 600 Hz signature of the APUs.

This device will place a 1 in bit 0 of port C, if a detection occurs. Normally it leaves a

0 there. Table 6 on page 18 shows the uses of all the bits of Port C,. The matched filter
THE MATCHED FILTER on page 21.

is described in Chapter I11.

16

Table 4. SSDR COMMAND CODES: Commands are issued by writing them to

port 4, on NSC810 #1,

located at 1. O space addresses 0x00 through 0x19.

Code

Value

Meaning

STANDBY

0x01

Commands the SSDR to cease all operations and
await further commands.

SWEEP

0x02

Commands the SSDR to enter sweep mode.
Enough memory is available for holding holding
12.5 minutes of noise generated by the VCO.

SCROLL

0x04

Commands the SSDR to enter scroll mode.
Enough memory is available for holding 30 sec-
onds of ambient noise.

LAUNCH

0x08

Commands the SSDR to enter launch mode.
Enough memory is available for holding two
ninutes of ambient noise.

RECORD

ox10

Commands the SSDR to start recording noise.
This is analagous to the RECORD button on
conventional tape recorders.

PLAYBACK

0x20

Commands the SSDR to play recorded data back.
This mode is analogous to the PLAY button on
conventional tape recorders.

Table 5. SSDR STATUS CODES: Status codes may be obtained by reading them
from port 4, on NSCS810 #2, located at I O space addresses 0x20 through

0x39.
Code Value Meaning
OPCOMP 0x40 Shows that the‘S_S_DR has completed the last
command it received.
NORMOP 0x80 Shows that the SSDR is operating normally.

4. Voltage Controlled Oscillator (VCO)
The purpose of the VCO is to irradiate the shuttle’s cargo bay with sound of a

predetermined frequency during the sweep phase. This is done by applving power to a

loudspeaker. The VCO is designed to step up in frequency from 35 Hz through 785 Hz

in 1 Hz steps. By recording the echoes, subsequent analysis will permit a comparison

of the acoustical response of the pure tone to that of the noise generated during launch.

8. Vibration-activated Launch Detector

This circuit is mounted on the same circuit board as the matched filter.

Its

purpose is to enable the control program to detect a launch, and so enable it to com-

17

Table 6. BIT ASSIGNMENTS IN PORT C, OF NSCS810A #!
Direction
Bit of Data Value Meaning
Flow
1 Detection of the Auxiliary Power Units (APUs)
has occurred.
0 Input - — — :
0 Detection of the Auxiliary Power Units (APUs)
has not occurred.
1 The Vibration-activated Launch Detector has
detected a launch.
1 Input . -
0 The Vibration-activated Launch Detector has
not detected a launch.
1 One of the barometric pressure switches has
detected a launch.
2 Input — , —
0 Neither barometric pressure switch has de-
tected a launch.
1 No ternunal is connected to the port.
3 Input 0 A termunal i1s connected to the RS-232C serial
interface port.
Order the power subsystem to change the
. 1 states of the relays specified in the command
4 Output at port B,
0 Do not change the states of the relavs.
N Not used.

mand the Solid State Data Recorder to enter launch mode. It will set bit 1 of port C,

high when it detects a launch (see Table 6 on page 18). Even if the matched filter never

detects the APUs, detection of launch will still cause the control program to force the

SSDR into launch mode.

6. Barometric pressure switches

On the same circuit board as the matched filter there are two barometric pres-

sure switches connected in a redundant, parallel configuration. These switches serve as

a backup for the Vibration-activated Launch Detector. Either one of them will place a

high voltage in bit 2 of port C, (see Table 6) when pressure drops below 27.9 inches of

mercury. This pressure corresponds to an altitude between 1500 feet and 2000 feet when

the lowest barometric pressures on record at Cape Canaveral are present. In general,

18

Table 7. BIT ASSIGNMENTS IN PORT C, OF NSC810A #2

Direction
Bit of Data Value Meaning
Flow
1 0] te the heat bsvstem.
0 Output perate the heater subsvstem
0 Do not operate the heater subsystem.
Not used.
2 Not used.
Analog to digital conversion is complete. This
1 refers to the On-board A. D Converter (see
3 Input Figure 20 on page 48).
0 Analog to digital conversion is not yet com-
plete.
p Output l Apply power to the bubble memory.
0 Do not apply power to the bubble memory.
] Do not apply a reset signal to the bubble
memory. This is the normal setting.
. Apply a reset signal to the bubble memory.
d Output This must be done while power is applied to
0 or removed from it. Once the power has been
switched on or off, the reset line can be re-
turned to 0.

the corresponding altitude will be somewhat higher than this since barometric pressures
will generally not be at their lowest when NASA launches a Space Shuttle.
7. Heater Circuit
The purpose of the heaters is to maintain the temperature of the controller’s
bubble memory module at or above 10°C during operation, and above —20°C otherwise.
To do this, there are heater strips attached to the bubble memory module. To turn on
the heaters, the control program places a 1 in bit 0 of port C,. It puts a 0 there to turn
them off. Insufficient power is available to heat all the bubble memories in the Solid
State Data Recorder (SSDR). If the contents of the log are saved, however, it should
at least be possible to ascertain the c.use of the loss of acoustic data in the SSDR.
8. Power Control Subsystem
Three batteries of dry cells, each powering a different bus, provide power to the
experiment. Partly in order to conserve power, but also to permit isolation of subsys-
tems if an overheat condition occurs, most subsystems receive power only when neces-

19

sary. The power subsyvstem includes a relay for each of these other subsystems. By
writing appropriate commands to port B, we can turn power to the relays on or off.
Table 2 on page 15 shows the uses of the pins of port B, for this purpose. By reading
a status byte from Port B, we can ascertain the position of each relay. Table 3 on page
16 shows the uses of the pins of port B, for this purpose.

Let us designate as relay, the relay controlled by pin i of port B,.10 Valid relays
are relay, through relay;.

There is no relay, since bit 0 of port B, has a special purpose. If bit O of Port
B, is a 1, then eligible relays will be switched on. If bit 0 of Port B, is a 0, then eligible
relavs will be switched off. Placing a 1 in bit / of Port B, makes rc.aqy, eligible for
switching. Finding a 1 in bit / of port B, means relay, is on.

Once we have issued a command to alter the position of one of the relays, we
place a 1 in bit 4 of port C, for 20 ms to permit the command to take effect, then put a
0 in that bit.

10 Note that pin i of port B, refers to the same relay as does pin i of port B,.

20

11I. THE MATCHED FILTER

This chapter describes the design of a filter whose purpose is to detect the presence
of the 600 Hz tone characteristic of the space shuttle’s Auxiliary Power Unit (APL).
This circuit has not yet been built and tested, but the most critical sub-circuit, the
bandpass filter it uses, has been simulated. The results of the simulation match the
predicted performance very closely and are included in this chapter.

The existence of the tone and the equation of a fourth-order elliptical (Cauer)
bandpass filter for detecting its presence are documented in Jordan [Ref. 6). While the
thrust of Jordan's work was to develop a digital filter, the implementation described in
this thesis uses analog electronics. This implementation has the advantage that it can
be constructed expeditiously with readily available components and requires less elec-
trical power. The digital implementation described by Jordan requires special hardware
and components. In particular, the Intel 2920 Digital Signal Processor integrated circuit
he proposed to use is no longer in production. Jordan does propose an analog imple-
mentation in addition to the digital one. It requires six operational amplifiers; the design
proposed here requires only four, and so require less power to operate. This is important
in this application, since power is limited.

The term iarched filter ordinarily refers to a particular kind of filter based on
autocorrelation. However, the term has come to be applied incorrectly to the bandpass
filter used to detect the application of power to the Auxiliary Power Unit. Rather than
abandon the term maiched filter, which has become thoroughly entrenched in the doc-
umentation of the Vibro-acoustic experiment, this author will continue to use (misuse)
it to denote a narrowband filter whose purpose is to respond to the characteristic
600 Hz tone emitted by the space shuttle’s Auxiliary Power Units beginning about five
minutes before launch. Figure 2 on page 22 is a block diagram of the author’s proposed
design for the matched filter.

A. MICROPHONE INPUT STAGE

The microphone input stage is shown in Figure 3 on page 23. It uses a Panasonic
WM-063T microphone. A 620 Q resistor limits the current through the microphone to
8 mA. The output is an AC signal superimposed on a DC bias.

21

MATCHED FILTER

a
© -
s.8. -, ~
nd _w -~ <
22w [33 =z
Sact 0o FAURIH H
z .
wicropHone] ~" 2 wigh |07 PRt onoer | 0
[WPyT PASS ANPLIFIER F—"F ¢(ypr1c WPLIFLER
STAGE FILTER BANDPASS
FILTER
ute L pPREAUP [173 aup
s z
~ - -
¥ .
: i i3z T “225
5 ves s> EoZa &5
. 34 vt bt vads
FuLL :“E on SECOND " THRESHOLD | T@Ra RRESETTABLE suLTE
- RECTIFIER ORDER v DETECTOR FULSE GENERATOR
LOWPASS ? COUMTER
FILTER 3
RECT *
LPF 9 THRESH ZOUNtEP oSt

l

“1GH [F 680 W
TCNE 1S FPEESENTY
FOR T3 ¢ § IR VORE

Figure 2. Block diagram of the Matched Filter.

B. HIGH-PASS FILTER

Figure 4 on page 24 shows the high-pass filter which connects the microphone to
the pre-amplifier. The purpose of this filter is to eliminate the DC bias from the micro-
phone signal. While simple AC coupling can in principle be provided by a capacitor
alone, a resistor to ground must be included to provide a path for DC [rom the non-
inverting lead of the pre-amplifier. Even though the input bias current of the OPAIllI
operational amplifier used to implement the pre-amplifier is less than 2 pA, if this were
neglected, charge would accumulate on the coupling capacitor and the amplifier would
saturate.

The cut-off frequency of the high-pass filter was set quite low, at

| | ~
= T2RC = Imis0 Ru)isonp) = Mz (2)

Since the signal of interest is well above this, at f= 600 1z, the filter introduces no sig-

nificant attenuation or phase shiflt.

22

MICROPHONE INPUT STAGE

+5V

CURRENT
LIMITER

ACOUSTIC
—@ ® SIGNAL
WITH DC OFFSET

PANASONIC WM-053T
MICROPHONE

6200

Figure 3. The microphone input stage.

C. PRE-AMPLIFIER

Figure 5 on page 25 shows the pre-amplifier, which boosts the microphone output
voltage by a factor of 11 (21 dB) using a non-inverting configuration of the OPA-111
operational amplifier. The OPA-111 has a very low noise of less than 40 nv/,/ Hz at
/=100 11z; at higher frequencies it is even lower. Thus the microphone input is boosted
to reasonable levels without injecting significant noise into the signal and is bullered

prior to the bandpass filter.

D. FOURTH-ORDER, ELLIPTICAL (CAUER), BANDPASS FILTER

Jordan [Ref. 6: p. 45] gives an analog implementation of a fourth-order, elliptical
(Cauer), band-pass filter. The design provided below reduces the number of operational
amplifiers by two, from six to four.

The coeflicients of the necessary transfer function are given in [Ref. 6: p. 36] and are:

s* 42,9587 x 1075 + 1.8991 x 10"
s+ 2.4351 x 10%° + 2.7642 x 107s% + 3.3558 x 10°s + 1.8991 x 10"

G(s) = (3)

The author used a computer program to find the roots of this transfer function, which

can be rewritten as [ollows:

23

HIGH PASS FILTER

CUT-0FF FREQUENCY = 7 H:

ACOUSTIC s DC-BLOCKED
SIGNAL h ACOUSTIC
150nF
WITH o SIGMAL
DC OFFSET X
a$
i

Figure 4. High-pass filter.

(s + j4.49 x 10Y)(s = j4.49 x 107)(s +3.07 x 10")(s —j3.07 x 10)
(s + 62 +3.84 x 10°)(s + 62 —j3.84 x 107)(s + 58.8 +3.59 x 10")(s +58.8 — j3.59 x 10%)

Gls) = Sl

By multiplying together the terms containing complex conjugates of each other, we ob-

tain the biquadratic representation of this function.

2+ (3.068 x 10")? sT4 (4491 x 10')!
= e 10 2, { 2843x10° - B
3.586 x N 3?2 3,843 x 1841 W2
s +(30.5)s+(-.586x10) st 4+ 370 s+(3.843x 10°)
Each of the factors in this expression has been written in the form
s+ w§
F(s) = (0)

©, ’
2 r 2
s+ (Qp)s + w,
This is the equation of a notch filter, given by Ghausi [Ref. 12: p. 16}. If w, = w,, then
the notch filter is symmetric, that is, the attenuation curve to the left and right of the
notch frequency is symmetric about that {requency when the transfer function is plotted
on a logarithmic frequency scale. The first factor in equation (5) has w, < w,. Conse-

quently, this factor represents a high-pass notch filter. The magnitude of G(s) rises once
w in s = jw exceeds w,; it levels off once w exceeds w,. By contrast, the second factor in

24

PRE-AMPLIFIER

. PAL LI
1'_'1______0 Voul

.

h 6

Coaf DO

NS
19. 9ka

Figure 5. Pre-amplifier.

equation (5) has w, > w,. Therefore, this factor represents a low-pass notch filter. The
magnitude of G(s) drops once w in s = jw exceeds w,; it levels off once w exceeds w,. A
low-pass notch filter and a high-pass notch filter placed in cascade form a bandpass filter
if suitable choices for w, and w, are made in each case.

It can be difficult to implement cascaded filters successfully. THowever, the cascade
filter is very attractive due to its simplicity, and for this reason we have employed it here.
The design presented has been simulated and so we believe it would be quite straight-
forward to implement it in hardware.

The three forms of notch filter and the bandpass [(ilter formed by cascading a low-
pass and a high-pass notch filter are shown in Figure 9 on page 29. Three of these
curves were calculated by computer from the factors in the transfer function given in
equation (5). The symmetrical notch filter transfer function plotted in the figure is an
example of what results from equation (6) when w, =w,. It, too, was calculated by
computer from the transfer function. When the high-pass notch filter is multiplied by
(put in cascade with) the low-pass notch filter, the bandpass filter shown in the figure
results. By using asymmetrical notch filters, as opposed to symumctrical ones, we can
obtain high gain in the passband. In this region both notch filters have high gain and

so reinforce one anotlier.

25

Plot of an Elliptical 4th Order
Bandpass Filter

[

40

20

IG(s)I, 48
|
/
\

-40

200 400 1000
f, Hz

Figure 6. DMagnitude of the transfer function of the elliptical bandpass filter.

The transfer function for equation (5) is plotted separately in Figure 6 on page 26;
this plot, too, was generated by computer. The advantage to writing the equation for
the elliptical band-pass filter in the form of cquation (5) is that it is a comparatively
simple matter to implement biquadratic filter sections using operational amplifiers; by
cascading these sections, the entire transfer function can be implemented. Again, it can
be dillicult to implement this scheme.

Figure 7 on page 27 shows a schematic for a generalized biquadratic filter using two
operational amplifiers. The blocks labeled with the letter “Y" represent admittances.
The design equations for these two filter sections are derived in APPENDIX A. Deri-
vation of Design Equations for the Matched Filter on page 71. For the high-pass notch

filter, they are

26

Y1 - Y3
0o —on
Amp
Y2 L3 Y4
V ¢
2
[
\
Y6 IN
Figure 7. A generalized biquadratic filter using two operational amplifiers.
¥ =Cez =L (7)
1 a ! Ca
. 1
by =5C,e2, =~ c 8)
Y, = CyesZ, = - 9)
3 b 3 Cb
. . 1
}4=YS=—1T¢$24=ZS=R (IO)
Ye=0=Zi =00 (1
- =)
Y7 SCb¢Z7 = st (lb)
. |
Yy= O,R <%= Q,R (13)

27

rOURTH-ORDER ELLIPTIC
BANDPASS FILTER

GAIN = 30 dB AT f = 600 H:

ATTENUATION = @ dB8 AT f < 500 Hz AND f > 700 H:z
J dB BANDWIDTH = 50 H:
B18Ke g -) 100K § |
| . p
A LF444
. LFa4s 27. 90
H
27 99 10 ouF
AC SIGNAL IN
a
©
1K 9 ; 11odke |13 "
I o | v " LF4da
266NF LFads 11.dke
o
LA It FILTERED
1Ka 2J£;r SIGNAL 0UT
£
"

A lourth-order, elliptic bandpass filter with Q = 12: It provides 30 dB

Figure 8.
ol attenuation outside the passband.

28

High—pass Notch Filter Low—pass Notch Filter
9 ?
)) AN
g e N
=o A povws e o N\
23 Ry / é _______ \' 3
B - \\ ///
) 1 H H
N V) E o ' q H
e ' : 3 SR SO S—
400 500 600 700 800 400 500 800 00 200
f, Hz !, He
Symmetrical Noteh Filter Bandcoss Filter mode ty Cosceding
_____ Two ASymmemc_ Neteh Filters
Y SSUUSUS SNSRI SUPRITS SURIORS QYIRS SRS SURIE SONE SO ;
g
3
ze :
<3 \ 5
2 T
' |
2
400 500 600 700 800
f, Hz
Figure 9. Notch filters: Symumetric, low-pass, and high-pass notch filters; and a

bandpass filter formed from a low-pass and a high-pass notch filter in

cascade.

29

Seofi-(2)

R= . (15)

For the high-pass notch filter, w, = 3.068 x 10%, w, = 3.586 x 10°, and Q, = 30.5. Hence

—Cl’- = 8.176. (16)
CG

If we make the arbitrary choice C,=10u F, then we get C,=122uF , R=279Q,
Zy=R,=100KQ, Z =R =818 KQ , and Q,R=851 Q. Note that Z, is a resistor
whose magnitude in ohms is the reciprocal of the magnitude of C, in farads. Similarly,
Z, is a resistor whose magnitude in ohms is the reciprocal of the magnitude of C, in
farads. The apparently arbitrary choice for C, was actuallv not random. This circuit
must be made with components whose stability is high to minimize changes in per-
formance due to changes in temperature. Capacitors with low temperature coeflicients
are available in polystyrene up to values of 10 uF. Using this value for C, allows R, not
to be too big, and R not to be too small.

For the low-pass notch filter, the design equations are

}1—Ys"'7”zl Zs=R, (17)
b
1

)2=Y7—SC¢$22 Z7=?6’ (18)
Y, =Y, =RL.»Z3 Z,=R, (19)
Y6 = 0626 = 00 (20)
Q,, ——=Zy=Q,R, (21)

Ra W; \2
Rb-apu-w;)-@

30

_1
wap

C (23)
For the low-pass notch filter, w,=4.491 x 10°rad/s, w,=3.843 x 10° rad/s, and
Q,=131.0. So

—& = 11.35. (24)

If we arbitrarily pick R,=1KQ, then R, =114 KQ, C=260 nF, and Q,R, =31 K Q.
Figure 8 on page 28 shows the complete bandpass filter. We have used the LF444 Quad
Low Power JFET Input Operational Amplifier. It has an extremely low input bias cur-
rent of 50 pA at most, and only 35 nV/\/Hz noise voltage.

We simulated the frequency response of this filter using Micro-Cap I1I {Ref. 13].11
We found that it performed almost exactly as predicted. Figure 10 on page 32 is a plot
generated by Micro-Cap I1I from its simulation. By comparing this plot with that gen-
erated from the transfer function in Figure 6 on page 26, we see that the onlv departure
from the predicted performance is a slight asymmetry in the ripple in the passband.
Since we are concerned only with detection of the Auxiliary Power Units' acoustic sig-
nature, and not with faithful reproduction, this is not a matter for concern. The center
of the passband and the location of the upper and lower notch frequencies are at the
predicted frequencies. The gain in the passband also is as predicted. The simulation
results are strong evidence of the correctness of the analysis and the feasibility of the
design.

The operational amplifier in the Pre-amplifier is an OPAI11l. Its output impedance
is 100 Q. The input impedance of the bandpass filter is well above 10 kQ throughout
the passband. The bandpass filter therefore does not provide a significant load on the
Pre-amplifier, and so the simulation results can be considered to be quite accurate, even
though they were produced with an assumption of zero output impedance from the

Pre-amplifier.

11 In the simulation, we used two LF442 operational amplifier packages instead of a single
LF444 operational amplifier package. These two packages provide operational amplifiers with
identical electrical characteristics, which justifies the substitution made.

31

Catn Phose
ob Oeg
40. 00 0.0

A\
20. 00) \\ -108.0
/
/
0.00 — / T\ | -218.0
™ \ Yl
\ S \ /£
~20.00 \/ \\ \ [/ -324.0
-40.00 \\ ; -432.0
\
\‘
.\-
-60. 00 -540.0
300 800
Frequency tn Hz
Figure 10. Frequency response of the simulated bandpass filter: This plot was

obtained using Micro-Cap Il [Rel. 13]. ‘The phase response also is
shown. It is the curve with the staircase-like appearance. The gain
response is nearly identical with that generated by computer and shown

in Figure 6 on page 26.

E. ADJUSTABLE GAIN

Figure 11 on page 33 shows how a single LF444 operational amplifier is configured

as a non-inverting amplifier of variable voltage gain up to 28 (29 dB). The gain is to be

adjusted so that the strongest output signal has 3 V peak-to-peak. This maximum signal

is that which exists when the Auxiliary Power Unit outputs its characteristic tone.

F. FULL-WAVE RECTIFIER

Figure 12 on page 34 shows the design of a full-wave rectifier. It converts the 600

Hz tone admitted by the band-pass filter into a fluctuating direct current signal. This

32

AMPLIFIER

GAIN < 28

AC COQUPLING AT OQUTPUT HAS A
16 Hz CUTOFF FREQUENCY

SIGN?:‘—’———‘;—‘. 1 1 . SIGNAL
1/4 10" 0w §§ 0uT
LFa44 -
27K |
(=]
x

Figure 11. Amplifier providing a variable voltage gain up to 28 = 28.9 dB.

circuit is modified from an absolute value circuit provided by Jung [Ref 14: pp. 236-237].
It operates as follows:

The inverting terminal of both operational ampliliers is at virtual ground. There-
fore, on the positive cycle of the incoming signal, current passes through resistor R, to
the inverting input of the first operational amplifier. This current is unable to enter the
operational amplifier because of its extremely large input impedance: nor can it pass
through diode D, , since that diode will only pass current in the other direction. Con-
sequently, it passes through resistor R,. At point a, the voltage is the negative of the
input voltage. The same amount of current flows through resistor R;. Resistor R, has
only half the resistance of R, , so it draws twice the current that resistor R, can supply.
The balance comes through resistor R,. This causes the output of the second operational
amplifier to match that of the input to the circuit. So during the positive cycle of the
input, the input voltage is duplicated at the output.

On the negative cycle, the two diodes serve to keep the voltage at point a at ground
potential. This eliminates all current through resistors R, and R,. The eflect is the same
as if the first operational amplifier were removed entirely. The second operational am-
plifier is then in the usual confliguration for inverting. The inverse of the negative input

signal is, of course, a positive signal.

3

FULL-WAVE RECTIFIER

R3
R?2 . Soxa ' RS
seka T 25K 0 soxo
3 VPP AC R1 L T
SIGNAL [N 6 I I 9
"’_J‘;sﬁ = T RECTIFIED
s . 7 >S1gHAL
LFass i!g LF4a4 out
4 D2 | - .

Figure 12. Full-wave rectifier.

In summary, whether the input is positive or ncgative, the output is the absolute

value of the input.

G. LOW-PASS FILTER
The signal out of the rectiher has a fundamental frequency of

2 x 600 Hz = 1200 Hz and this is superimposed on a DC voltage derived as follows:

v(t) = 1" sin(2xf1)

= I"sin(w!?) (23)

34

Generalized Second-Order
Low-pass Filter Using One OPAMP

|
2 C,
> 1 -
R, ir o '
™ VVVY 2 Amp - ouTt
—» —AWN\—
| —
3 I R,

Figure 13. A general second-order, single operational amplifier, low-pass filter.

35

SECOMD-0ORDER
LOW-PASS FILTER

CUTOFF FREQUENCY = 5 H:

470NF
RECTIFIED 10oKs L— ol 2 | » ™ AVERAGE
1 K¢
STGNAL S1GNAL
LF44d CEVEL
('Y
2
‘{:‘J

Figure 14. Second-order, low-pass filter.

- b sin(wi)de

cos(wi) | TT
- - « 0

(cos(2@/7'>
21 2

-2 —(—%)+%]

(20)

L
w

36

The signal into the filter has a peak amplitude of 1.5 V. Application of this formula
gives V,,=0.955 V. This is the amplitude of the strongest signal we expect to receive
from the Auxiliary Power Unit.

The low-pass filter which follows the rectifier is designed to have a cut-off frequency
of £, =5 Hz. This frequency is well below the fundamental frequency of 1200 Hz passed
by the rectifier. As a consequence, only the average signal V,, we have just derived will
be present at the output.

The circuit is based on the general circuit shown in Figure 13 on page 35. The de-
sign equations for this circuit are derived in APPENDIX A. Derivation of Design

Equations for the Matched Filter on page 72 and are reproduced here.

C,=4G0; (27)

R =Ry=R=—"e (28)

In this application, we are not concerned with the phase of the signal. Therefore it is
reasonable to seek a maximally flat transfer function. To do this, we implement a

second-order Butterworth filter, for which

= 0.707.

Given our nominal cut-off frequency f, = 5 Hz, we arbitrarily choose C, =220 nF. We
get C, =440 nF, and R =102.3 kQ. Since the cut-off frequency is not critical, we can
pick the more convenient component values C, = 470 nF and R = 100 kQ. The resultant
cut-off frequency is f, = 4.9 Hz and Q, = 0.731. Since the purpose of this low-pass filter
is to find the average of the rectified 600 Hz tone, this deviation from the design pa-
rameters is quite acceptable as the cut-off frequency still is well below the fundamental
frequency of 1200 Hz created by full-wave rectification of the 600 Hz tone.

The chief benefit provided by this filter is a roll-off of 40 dB/decade when
f>f =49 Hz. This amounts to 96 dB attenuation when f= 1200 Hz, which is ample
to suppress the AC component in the signal out of the full-wave rectifier. Figure 14 on

page 36 shows the component choices and circuit for the second-order low-pass filter.

37

THRESHOLD
DETECTOR

AVERAGE

SIGNAL LEVEL
PEAK = ©.955V

Y
45V
a (-]
5% 2 LM35B Ox HIGH WHEN INPUT
wl170mv 3 7 EXCEEDS 170mV
v
[«

WILL DETECT SIGNALS
NO MORE THAN
15d8 BELOWN ©.955V

.”

Figure 1S, Threshold detector.

H. THRESHOLD DETECTOR

Figure 15 on page 38 shows the design of a threshold detector. There is some evi-
dence that other sources of 600 Hz signals that might be present simultaneously will be
15 dB below this. The voltage which is 15 dB below 0.955 V is 0.170 V. Any signal
which exceeds the 0.170 V threshold just derived should cause the threshold detector to
signal that a sufficiently strong 600 Hz signal is present. Presumably this signal is from
the Auxiliary Power Unit. The threshold detector uses an LM 358 operational amplifier.
This device requires only a single power supply and it tends not to “latch up” when
configured as a comparator. Its output goes high (to 5 V) whenever the threshold is

exceeded. Otherwise, its output is held low (at ground).

I. RESETTABLE PULSE COUNTER

Figure 16 on page 39 shows the Resettable Pulse Counter. Its purpose is to signal
the presence of a 600 11z signal from the Auxiliary Power Unit if it has been contin-
uously present for 73.1s. Spurious signals with a component at f = 600 Hz may be
present intermittently. We do not expect them to be continuously present at levels more

than 15 dB below that of the strongest signal expected from the Auxiliary Power Unit.

38

RESETTABLE PULSE COUNTER

™ HIGH 1f 600 Hz
.5V SIGNAL IS PRESENT
FOR 73.1 S OR MORE

15
NC adod o pLe
NC 120¢ cls
NC 130 B+
NC 1400 ALS
14t LDpe | -
HIGH WHEN 74HC 161
600 Hz SIGNAL
7 lq 2

-

PULSE TRAIN ¥[TH
PERIOD = 4 71 S

Figure 16. Resettable Pulse Counter: 'This circuit decides that the APUs are on

if it gets a signal [rom the threshold detector for 73.1 s.

Consequently, the Resettable Pulse Counter has the eflect of eliminating false triggering
due to these spurious signals.

Whenever the threshold dectector indicates the presence of the 600 11z tone charac-
teristic of the Auxiliary Power Unit, it produces a high output. This signal is applied to
the LOAD(L) input of the Resettable Pulse Counter. This permits the counter to begin
marking off the pulses which arrive from the Pulse Generator, described below. Because
the pre-load inputs A4 through D all are connected to ground, the counter will count from
zero to 15, at which point its CO output will go high. Thus, the counter will pernut
sixteen pulses to arrive from the Pulsc Generator belore it goes high. Since the period

of these pulses is T = 4.57 s, the output will go high if 14 x 4.57 s = 73.1 s elapscs.

39

Configuration of an LMSS5S Timer
for Astable Operatfon

I [*Vee
4 8 RA
7
2
3w,
6
Vour —{3 S -—7= C
1

Figure 17. Astable operation of the LM SS5 Timer to generate a pulse train.

J. PULSE GENERATOR

This module is based on the LMS555 Timer integrated circuit. The data sheet for this
circuit provides equations to permit choosing component values to provide the desired
period and duty cycle. The duty cvcle is not critical to this application. Figure 17 on
page 40 shows the gencral configuration for astable opcration, which is the mode of

operation which produces a periodic signal. The design equations are:

Lharge = 0.693(R, + Rp)C (30
'dl:charge = 0.693RBC. (3 l)
Thus the total period
T= charge Udischarge = 0.693(R, + 2Rp)C. (32)
40

PULSE GENERATOR

+5vy +5y
. 4
g R
~ T b1s
-] TR 2
s 6 lTur PULSE TRAIN WITH
S
~ ouT 3 >F’ERIOD = 4,71 S
S lcv
*;": w LM555 w
- == zZ—
= s s
Figure 18. Pulse Generator.
Solving for C we get
C= I =11 uF (33)
0.693(R, + 2R5)C
and the duty cycle
Ry
PR IR, o

Picking R, = R, = 200 KQ provides a duty cycle D = 0.333 , which is perfectly accepta-
ble for this non-critical parameter.

Iigure 18 shows a Pulse Generator based on this configuration. This circuit
produces a regular stream of square pulses of period 7'=4.57 s. These are used by the
Resettable Pulse Counter to measure the amount of time when a reasonably strong 600

Hz signal is present.

41

K. SUMMARY

This completes the description of the somewhat inappropriately named matched fil-
ter. Simulation of the bandpass filter used in the matched filter has shown that that part
of the design is correct and feasible. The implementation and testing of the bandpass
filter and the other components of the entire circuit remain to be done in the future.

42

1V. DESIGN OF THE CONTROL SOFTWARE

In describing the software which operates the controller hardware, we shall adopt
the following conventions.

We will show variable names in bold, e.g., variable; function names in bold with
(possibly empty) parentheses at the end,12 e.g., function(), and constants in uppercase,
e.g., CONSTANT.13 We shall also use bold for the names of regions, described below in
Section A. Memorv Map. Development of the software for the Vibro-acoustic Exper-
iment was done under the Microsoft Disk Operating Svstem (MS.DOS). Figure 35 on
page 89 shows how we arranged the hierarchy of files containing the source code, object
code, header files, erc. See APPENDIX D. HIERARCHICAL ORGANIZATION
OF SOFTWARE FILES on page 88 for a more complete discussion of this organiza-

tion.

A. MEMORY MAP _

Figure 19 on page 44 shows the addresses of the ROM and RAM in the computer.
Our NSC800-based controller provides for up to eight EPROMs and RAMs in any
combination, each holding 8 KByvtes. The wiring of the printed circuit board permits
placing a RAM chip in any of the addresses evenly divisible by 0x2000 (e.g., 0x0000,
0x2000, 0x4000, erc.) The addition of a jumper wire permits the RAM chip to be re-
placed by an EPROM.

The NSC800 uses the same architecture as the Z-80 [Ref. 10]. Because the Z-80
architecture causes execution to begin at address 0x0000 whenever power is applied, it
is necessary to install an EPROM at location 0x0000. It was therefore convenient for
us to put all EPROMs at the low end of memory, and all RAMs at the high end. AP-
PENDIX C. HOW THE UNIWARE SOFTWARE USES THE COMPUTER
MEMORY on page 86 explains the way in which the Uniware C Compiler employs the

memory.

12 According to custom in the C programming language.

13 In C, constants are declared using the #define directive. These are stored in various header
files such as vibro.h.

43

Memory
Address

0x0000

0x2000

0x4000

0x6000

0x8000

0xa000

0xc000

0xe000

Memory Memory

Type Usage
reset
ROM -
code
ROM
const
ROM
string
ROM data
, NOT IN USE
data & ram
RAM mbrkram
stack

Figure 19. NMemory map of the computer: This figure shows the locations of
ROM, RAM, and the eight soltware regions. The ROM and RAM
addresses are specified by the hardware design. The addresses of the

regions are specified by the linker.

B. OPERATION OF THE VIBRO-ACOUSTIC EXPERIMENT
l. Menu-driven Diagnostic Program

Some years ago the filin Alen was produced. As a part of the publicityv cam-
paign attending its release was the slogan, “In space, no one can hear vou scream.”
Similarly, when the Vibro-acoustic Experiment is performed in the Space Shuttle, there
will be no one to hear it scream, that is, to monitor the progress of the experiment.

This is quite different from the sittution on the greusl, where generally there
is @ menitor attached, and there is someone monitoring execution of the program.
Furthermore, there is a need on the ground to test components of the experimental
package without running the experiment from start to finish. For example, we have
found it helpful to be able to operate the bubble memory module attached to the con-
troiler hardware in a maenual mode, By this means, we have debugged the sofiware an
ensured that 1t can cperate the bubbie memory successfuily before attempting t2 use it
12 our application.

An oovious way to allow scftware to be tested on the ground but used to run
the expernment in space would be to compile a different program for each purpose. This

isote puta nuldly, @ veny inconvenient approach. Not anlv must two distinet programs

be munaged, but assurance that the diagnostic version works gives little assurance that
the epcrutionad one wid werk, We have elected to have a single pregram, Gable under

aib aircummstances, Tais requires that the pregram be able to recognize thut someone is

mentorny it To do thas 1 s’y checks bit 2 oof port ¢ to see il a termimal is con-

. i 1. Y\ ’!‘“ . O | N ¢ -y T
. .- LR B < .- PN - . ~ . . i t3d Cese
nocted o the RS-2320 sematmterfuce, (See Toehic ooon e 18 there oo terminal
GOoden gy WY U T pesi s ad Lasie s 1 e R O RN SR LN TSR I S SRS SOTCEEEAN
.- LN 1 \ ! »
s M - [N N - ~ o
Al
o - IN o
S [OOSR IVt Uit e oo e esieit s Y Y l[i AR BRI - .‘} LU DO s
L T L L U S TS RS ST SO Ot VRS S U BN S O S SN a8 I 1 |
‘ . [N . sl e v e e - [OOSR e
WU oare e r ot oot th vepament, | SR DAL (U SRR GO R SN ST
S0 v i ! Ve o S oy Loen ae ot s (et N
N RS (S A [\ “ e S Y] Ch < W ey [N B4 BN
.
-~ - . i ~
] st N LA T e . \ 3 '} R

H v i b e . - . et e e - 1 L s “n T ~N. v eage
oosoliviare ro ot Thin 0% en Gledt fnuiar 1 dawred By remavicg povoboand

. LR N ie
P ‘."A‘ e b e

M tee TP . F— ot e e ~ N 1, A P T TN N .t . TN
JooBexl tieve cloch contrrl e o om0 s s Lot b e L o et a
oy R D T S S O P S SR T T S L T

3. Power subsystem control. Individual subsystems can be powered up or down under
the user's control.

4. Bubble memory control. The bubble memory used for storing a log of events per-
formed during the experiment can be powered up or down, initialized, or tested
under the user’s control. These tests are at a verv low level. Data stored in the
bubble memory consists of character strings, and these are unformatted. The data
are not treated as formatted log entries.14

5. Analog-to-Digital (A/D) converter control. Any of the temperatures and voltages
accessible through a channel of the on-board A/D converter can be read under the
user's control.

6. Running the experiment. This causes the Vibro-acoustic experiment to be per-
formed. The only difference between operating the experiment under menu control
and operating it with no terminal attached is that with a terminal, a large amount
of diagnostic information is displayed during execution. !'ithout a terminal at-
tached. this information is lost. The advantage to this approach is that if the ex-
periment works on the ground. we are assured it will work in space, since essentially
the same code is executed in both cases.

7. Perform port input and output. This is a very low-level test. Characters of data can
be written to or read from a port at any address, one at a tume. This is helpful in
debugging the software.

8. Display contents of the controller’s memory. This, too, is a verv low-level routine
uscful only for debugging.

9. Examine or change bubble memory. These routines permit the formatted contents
of the bubble memory log to be displaved in a readable manner on the terminal.
In addition to allowing debugging to be done, this operation permits the
experiment’s operation to be tailored in advance.

LCach of these menu items leads to a further menu of functions to permit the
operator to test all subsystems of the experiment. These routines are discussed in detail
in the software description contained in Section A. Major Subroutines and Functions
on page 108,

2. Performing the Experiment
This section describes in detail the steps of the experiment. These steps are il-
lustrated in the flowcharts contained in the following pages.
a. Microprocessor Control Program
Flowchart 0 in Figure 20 on page 48 shows the overall structure of the
control program. The program begins executing when power is first applied to the sys-
tem. After initializing the hardware for proper operation, it checks to see whether or
not there is a terminal attached. If not, it proceeds on the footing that it should run the

14 There are additional bubble memories within the Solid State Data Recorder (SSDR) which
are not tested by these routines.

46

experiment, bypassing all the menu routines. If, on the other hand, a terminal is con-
nected, then the program deduces that the experiment is not being run in space, where
no terminal will be available, and so it enters the menu subsystem. The experiment is
not performed unless the user specifically requests this later.

b. Initialize Hardware

Flowchart 1 in Figure 21 on page 49 is a more detailed look at block 1 of
Flowchart 0 in Figure 20 on page 48. The first initialization task to be performed is to
let the programmable input’/output devices know which data lines are for input and
which are for output. There are two clocks which also must be initialized. One of these
provides a clock signal for serial communications at 9600 baud. The other provides a
clock for conversion of data from analog to digital form.

¢. Run the Vibro-acoustic Experiment

Flowchart 2 i1s shown in Figure 22 on page 30. It is a more detailed Ic oK
at block 2 of Flowchart 0 in Figure 20 on page 48.

One of its first tasks is to initialize certain variables in the software. It then
ascertains (by consulting a record in the bubble memorv) whether the [ull experiment
or the abridged version is to be performed. The full experiment consists of the sweep.
scroll, launch, and post-launch phases already described in Chapter I. INTRODUC-
TION on page 1. The scroll phase is omitted if the Auxiliary Power Units (APUs) are
not detected before the launch was detected.

In the abridged experiment. the program initiallv checks to see if the
barometric switches have been triggered, which they would have been were the Space
Shuttle already in space. This check 1s done to avoid entering record phase a second
time when the space shuttle is already aloft. Such a situation might arise after a power
fault during lift-off: to recommence record mode would erase the acoustic data recorded
during the launch.

The next decision to be made is whether or not to enter record mode.
Conceivably, the Auxiliary Power Units could be detected and the record phase entered
at some point, but the launch might then be scrubbed. If power were not removed from
the experiment, then the control flow would permit record mode to be commenced anew.
Why not just start record mode again? Operating the Solid State Data Recorder with
its bubble memories consumes considerable power. We cannot afford to waste that
power by, in effect, continuously operating the recorder unnecessarily. The decision not
to let this mode be begun again until at least 12 hours after the last time will prevent this

from happening. Also, if a power fault occurred after the record phase began. we would

47

Miecroprocessor
Control
Progiam
InlttaNze
Hardware
b
N Monitor Y
Connected?
Run the Enter the
Vibro-scoustic Meny
Experiment Subsystem
2 3

Figure 20. Flowchart 0: This is the highest level of {lowchart in the hierarchy.

Processing begins here when the controller first receives power.

prefer to avoid interfering with the Solid State Data Recorder (SSDR). which might still
be operating successfully in record mode. This safeguard will ensure that such interfer-
ence does not occur. If a mission is scrubbed, it would not be rescheduled for at Ieast
24 hours. The 12 hour wait is long enough to avoid interfering unduly with the SSDR
and to preclude wasting power and is short enough to permit correct operation when the
launch is rescheduled.

Once either the Auxiliary Power Units or any launch indication are de-
tected, record mode can be entered. Normally, upon completion, we expect to be in
space. In this case, control will be passed to the post-launch phase of the mission.
Othenrwise, the mission must have been aborted and the 12 hour wait begins.

d. Initialize Software

Flowchart 2.1 in Figure 23 on page 51 is a more detailed look at block 2.1
of Flowchart 2 in Figure 22 on page 50. Initializing the software entails discovering
what the current status of the experiment is. For example, this might be the first time

power has been applied, in which case the sweep phase has not been performed vet, and

48

INITIALIZE
HARDWARE

Designate
1o
Lines

)

initislize
1836 KHz
Clock for
9600 BAUD
UART

Initistize
614 4 K2
Clock lfor
A/D
Converters

1.3

Figure 21. Flowchart I: The flowchart shows the initialization of hardware and

software at the very beginning of program execution.

the launch has not taken place. Or perhaps the sweep was performed previously, but the
Space Shuttle sull is on the ground. This information was stored previously in the
bubble memory log, and it must be retrieved belore the controller can know what it
should do.

The controller also turns ofT the Voltage Controlled Oscillator for safety
reasons. Because the speaker connected to it emits such a loud tone, it would be dan-
gerous to allow it to operate until the controller can first see whether it has been begun
once before. If NASA eventually agrees to permit the siveep phase to be performed, they
will almost certainly afford us only one opportunity to perform it. If it does not com-
plete successfully, there is no second chance. The heater subsystem also is deactivated
as a power-saving measure until the controller can find out exactly what to do.

e. Do Sweep

Flowchart 2.2 in Figure 24 on page 52 is a more detailed look at block 2.2
of Flowchart 2 in Figure 22 on page 50. If the sweep phase ever was started before, or
if the launch was performed previously, the siwvecp phase is skipped. Otherwise the con-

troller notes in the bubble memory log that it has now started the sweep phase, which

49

VIBRO.
ACOUSTIC
EXPERIMENT
Initiattze
Sofiware
2.1
N
Y
[+] Speace?
Sweep (Barometrio
switch
2.2 fired?)
WaR for
APUs 1o stant
or for faunch
Indlcations
23
mode been tried
within the last
N 12 houre?
M Wat for
APUs to stant
ot for launch
Do Indications
Scroll
ero 21
2.4 ¥
O
Record
Do 2.7
Launch L—
' 25
Do
Posi.
Launch
2.8

Figure 22,

Flowchart 2: This flowchart shows the steps entailed in both the full
and the abridged versions of the Vibro-acoustic Experiment.

INITIALIZE
SOFTWANRE

Read expetiment
states
from bubble
memory log

2.1.1

y

Make sure
VOO and
Hoster
Subsystems
are off
2.1

Figure 23. Flowchart 2.1: This tlowchart shows the steps entailed in initializing

the software when the experiment is performed.

will ensure that it never tries to restart it. The controller now causes echoes of known
frequencies to be recorded.
The controller expects to be informed of the completion of the sweep phase.
[However, a I3 minute timeout is initiated to make sure that the controller does not wait
forever for this information.
J- Start Recording Response at Known Frequencies
Flowchart 2.2.2 in Figure 25 on page 53 is a more detailed look at block
2.2.2 of Flowchart 2.2 in Figure 24 on page 52. It shows the steps entailed in initiating
the sweep phase. The Analog to Digital Converter Subsyvstem must be turned on first,
since the converters power the microphones which reccive the acoustic signal. The
Voltage Controlled Oscillator (VCO) can then be started, followed by the Solid State
Data Recorder (SSDR). Starting the SSDR requires first applying power to it and then
commanding it to enter sweep mode.
g. Stop Recording Response at Known Frequencies
Flowchart 2.2.4 in Figure 26 on page 54 is a more detailed look at block
2.2.4 of Flowchart 2.2 in Figure 24 on page 52. It shows the steps entailed in termi-
nating the sweep phase. These steps are to remove power from three subsystems: the
Voltage Controlled Oscillator (VCO), the Solid State Data Recorder (SSDR) and the
Analog to Digital (A/D) Converter.

Sl

Assert
SWEEP
STARTED

221

Stany
facotding
Raspsnes al
Xnown
Fraquencias

B

Start
13 minute
time
out

Stop
flacosding
Response at
Known
Frequancies
4

Figure 24. Flowchart 2.2: This flowchart shows the steps entailed in performing
the sweep phase of the experiment.

52

START RECORDING
RESPONSE AT
KNOWN FREGUENCIES

Turn
AID
Converter
Subtystems
O

222

Turn Vonage
Controlled
Osclitator

(vCO) on
2222

!

Turn Solid
State Data
Recorder
(SSOM en
2223

Put SSOR
Inte S\EEP
Mods

2224

Lrave
222

Figure 25. Flowchart 2.2.2: This flowchart shows the steps entailed in initiating
the recording of known [requencies during the sweep phase of the ex-

periment.

h. Wait for APUs to Start or for Launch Indications
Flowchart 2.3 in Figure 27 on page 35 is a more detailed look at block 2.3
of Flowchart 2 in Figure 22 on page 50. There are two possible indications of a launch.
One is a signal from the Vibration-activated Launch Detector circuit. The other is a
signal from the barometric switches. If either of these is present, the flag LAUNCHED
is asserted. Otherwise, the controller will check to see if the Auxiliary Power Units
(APUs) have been detected. If so, the flag APPUs ON is asserted. If no indications are
present, the controller will continue looking for them indefinitely.
i. Do Scroll
Flowchart 2.4 in Figure 28 on page 56 is a more detailed look at block 2.4

of Flowchart 2 in Figure 22 on page 50. It shows the steps entailed in performing the

53

STOP RECORODING
RESPONSE AT
KNOWN FAEQUENCIES

Turn Voltage
Contiotied
Oscillator

vCO) oit

22414
9

Tutn Sollg
Siats Dala
Recorder
{SSOR) ot
2242

K

Tarn AD
Converiars
on

2242

Figure 26. Flowchart 2.2.4: This flowchart shows the steps entailed in stopping

the recording of known frequencies during the swecp phase of the ex-

periment.

scroll phase. Power is applied to the Solid State Data Recorder (SSDR), and it is then
commanded to enter scrofl mode.

The mission will be scrubbed if no launch occurs within seven minutes after
the Auxiliary Power Units are started. We initiate a ten minute timeout, which is con-
servative. If at the end of ten minutes no launch indications have been detected, the
program aborts; otherwise, it asserts the LAUNCHED flag.

Jj. Abort

Flowchart 2.4.4 in Figure 29 on page 57 is a more detailed look at block
2.4.4 of Flowchart 2.4 in Figure 28 on page 56. It shows that when the mission is
deemed to have been aborted, power is removed [rom all subsystems.

k. Do Launch

Flowchart 2.5 in Figure 30 on page 58 is a more detailed look at block 2.5

of Flowchart 2 in Figure 22 on page 50. The flowchart shows the steps entailed in

performing the launch phase of the experitnent. The first step is to determine whether

54

WAIT FOR

APUsS TO

START OR
FOR LAUNCH
INDICATIONS

Assart
APUS ON

Figure 27. Flowchart 2.3: This flowchart shows the steps entailed in listening for

the Auxiliary Power Units (APUs) while simultaneously waiting for in-

dications of a launch.

this is necessary or not. If the launch was ever determined to have been completed in
the past, the LAUNCH DONE will have been asserted then. In this case, it is not ap-
propriate to perform this phase a second time and so all the blocks in this flowchart will
be skipped. Otherwise, the Solid State Data Recorder (SSDR) is conunanded to leave
scroll mode and enter launch mode. Within two minutes of the time of launch, there will
no longer be any air in the Space Shuttle’s cargo bay. We initiate a thrce minute timeout
so that, in the event that the SSDR fails to signal completion of the launch phase, the
controller will not be stuck permanently in /aurch mode. The controller repeatedly
checks either for a completion signal {rom the SSDR or for a timeout.
l. Check for a Completed Launch

Flowchart 2.5.3 in Figure 31 on page 59 is a more detailed look at block

2.5.3 of Flowchart 2.5 in Figure 30 on page 58. If the LAUNCH DONE flag ever was

00 SCROLL

Tumn Solld
Siale D
Recorder
(880R) on
2.4.1

k!

Stadl
tecording
pre-isunch
ambient
nofse
2.4.2

minute
time-out
2.4.3

Abort

Figure 28. Flowchart 2.4: This flowchart shows the steps entailed in performing
the scroll phase between the time the Auxiliary Power Units (APUs)
start operating and the time that the launch is detected.

asserted, this block does nothing. However, if this (lag was not previously asserted, the
state of the barometric pressure switches is checked. If either of themn has tripped. we
have a positive indication of launch. It is then appropriate to sct the LAUNCH DONE
flag.

56

Remove
powsr from
aft
subsystems
2441

Figure 29. Flowchart 2.4.4: This flowchart shows what happens when an abort

condition is detected.

m. Do Post-launch
Flowchart 2.6 in Figure 32 on page 60 is a more detailed look at block 2.6
of Flowchart 2 in Figure 22 on page 50. It shows the steps cntailed in performing
post-launch functions. These are the monitoring [unctions required after the Space
Shuttle has left the earth's atmosphere. The first step is to remove power from all sub-
svstems. A five minute timeout is then initiated. The effect of this is to permit system
status to be recorded every five minutes. ‘The heater subsystem is one of the subsystems
which needs monitoring. A check is done to ensure that the launch has been recorded
as complete. These two steps are repeated continually throughout each five nunute pe-
riod. At the completion of that period, current valucs of the temperature and voltage
at various points are rcad and stored in the bubble memory log. A check also is made
to sce if the voltages on the buses are too low. If so, the post-launch processing ccases.
n. Monitor Heater Subsystem QOpcration
Flowchart 2.6.3 in Figure 33 on page 61 is a miore dctailed look at block
2.6.3 of Flowchart 2.6 in Figure 32 on page 60. It has two branches. In one, the tem-
perature of the experimental apparatus is suflicientiv high, in which case the heater
subsystern is deactivated. In the other branch. the temperature is too low and the heater
subsystem is activated.
o. Do Record
Flowchart 2.7 in Figure 34 on page 62 is a more dectailed look at block 2.7
of I'lowchart 2 in Figure 22 on page 50. It shows the steps entailed in putting the ex-

periment into the record phasc. These steps are, first, to put the Solid State Data Re-

57

Asserted?

Put Solid Statel
Data Recorder]
(8SOR) Inte
LAUNCH morde

2.5.¢

)

Start
3 minute
time-out

Chack
for 8
Complated
Lavnch
259

sson
Camplaiad
LARCH
thode?

Leave
23

Figure 30. Flowchart 2.5: This (lowchart shows the steps entailed in performing

the launch phase of the experiment.

corder (SSDR) into the launch mode, and then to begin a 20 minute timeout, after which
time the SSDR would have run out of memory in which to store recorded sound. The
SSDR normally would inform the controller that it has completed operation before the
timeout occurs. The timeout is meant to permit the controller to lcave the record phase

even if the SSDR fails to signal completion.

58

CHECK FOR
A COMPLETED
LAUNCH

Barometric
Swlich
Tripped?

Assert

Figure 31.

Flowchart 2.5.3: This flowchart shows the steps entailed in deciding
whether or not a launch has occurred. The barometric switch is
deemed to be the most reliable (and only convincing) indication of a
launch.

59

DO POST-LAUNCH

Remove
powsr from
an
subsystems

261

Start
S minuie
time.out

282

Monitor
heater
sudsystem
opsration

243

Check
tor
8 completed
launch

25)

Y

Record
temperatyres

voltages
264

Figure 32. Flowchart 2.6: This flowchart shows the steps entailed in performing
measurements and monitoring temperatures and voltages after the ex-

periment is complete.

60

MOHITOR Entng

HEATER 261
SUBSYSTEM
OPERATION
N Y
y
Tyrn Tutn
ha- hentar
subsy. .m subsystem
on oft
2631 2632
Lea.e
283

Figure 33. Flowchart 2.6.3: This flowchart shows the steps entailed in monitor-
ing the temperatures of the bubble memory unit and maintaining that

temperature above 10°C.

61

0O AECORD a

Put SSOR
Into
FECoro

2.7

)

Start
20
Minuie
Timeout
272

Chodk
for &
eomplaiad
launch
2513

SSOR
Compleled
FECOD

Mode?

Figure 34. Flowchart 2.7: This flowchart shows the steps entailed in perforning
the record phase of the abridged experiment.

62

V. HOW TO GET THE EXPERIMENT READY FOR A LAUNCH

This chapter explains what must be done prior to the launch of the Space Shuttle
to ensure that the experiment is performed correctly. The current status of the exper-
iment is stored in page O of the bubble memory log. By setting appropriate information
there, we can ensure that when power next is applied to the experimental apparatus, the
correct sequence of steps is performed.

There are really two possible experiments to be performed: the unabridged exper-
iment and the abridged one. The abridged experiment dispenses with the sweep, scroll,
and /aunch phases of the experiment, replacing them with a single record phase. Which

of these is to be run must be stored in page 0 before launch.

A. UNABRIDGED EXPERIMENT
Attach a terminal to the RS-232C interface and apply power to the experiment. The

controller will present the following menu on the terminal.

Software reset.

Realtime clock functions.

Power relay switching functiomns.
Bubble memory test functions.

A/D converter functions.

Run experiment.

Perform port I/0.

Display contents of controller memory.

Examine or change the data logged in the bubble memory.

N = T Q MmO O WP

Exit this menu.

Choose option (I). The following menu will be presented next.

Display page O.
Display a page of the log.
Alter the contents of page 0.

N O D

Exit this menu.

Choose option (C). The following menu will next be displayed.

Toggle 'sweepstarted' flag from TRUE to FALSE.
Toggle 'launchdone' flag from TRUE to FALSE.
Alter value of next available page from 0x12 = 18.
Alter value of next available half page from 1 to O.
Toggle 'full_experiment' flag from TRUE to FALSE.

0O O w >

present to permit RECORD i1 .de to be initiated.)

Z Exit this menu.

The menu may not look exactly like this, inasmuch as the flags and page numbers may
vary. The objective, however, is to set the sweepstarted flag to FALSE; the launchdone
flag to FALSE; the value of the next available page to I; the value of the next available
half-page to 0; the value of the full_experiment flag to TRUE. The value of the
RECORD_start_time does not matter since the record phase is not performed in the
unabridged experiment. If a value is already correct, it may be left alone. Only if it

needs to be changed must the corresponding menu choice be made.

B. ABRIDGED EXPERIMENT

For the abridged experiment, follow the same steps as with the full experiment with
the following differences. The full_experiment flag should be set to FALSE, and the
RECORD_start_time should be set to some value at least 12 hours before launch. The
value of the sweepstarted flag does not matter because the sweep phase is omitted in the
abridged experiment.

C. BOTH VERSIONS OF THE EXPERIMENT

Once all the required choices have been made. the controller may be shut off and the
terminal should be removed. The next time power is applied, the controller will discover
that no terminal is attached, it will consult the values last stored in page 0 to see what
it should do, and it will perform the experiment according to those values.

Specify the 'RECORD_start_time' (make this at least 12 hours before the

VI. TESTING OF THE SOFTWARE

Every module of the software has been tested individually for correctness. The in-
tegrated control program also has been tested exhaustively, but because the hardware
has not yet been completely integrated, there is a limit to what could be accomplished.
This chapter discusses how the testing has been performed and suggests further tests to
be done once hardware integration is complete.

The following hardware components have been completed and have been success-
fully operated by the integrated software:

1. Bubble memory for the experiment’s log.

o

Terminal.
Real Time Clock.
On-board Analog-to-digital (A D) converter.

[T S V]

Voltage Controlled Oscillator.

6. Power Control Subsystem.

In addition, a preliminary design of the Solid State Data Recorder (SSDR) was tested
bv Kuebler [Ref. 9]. His tests included a demonstration that the off-board analog-to-
digital converters associated with the SSDR functioned correctly. that the SSDR prop-
erly stored the acoustical data provided to it by the off-board analog-to-digital
converters, that this data could be retrived from the SSDR. and that an analvsis could
then be performed on the data. The final version of the SSDR has not vet been com-
pleted, and in the testing of the software described in this thesis, no attempt has been
made to emulate its performance. However, the controller dutifully sends commands to
it and makes repeated (unsuccessful) attempts to read its status information. It also
notes its inability to get correct responses in the log.

The software has been tested many times under various conditions, both with and
without a terminal attached. A test requires the initialization of flags in page O of the
bubble memory log in advance. How to do this is explained in Chapter V. HOW TO
GET THE EXPERIMENT READY FOR A LAUNCH on page 63. There are two
ways to end a test, depending on whether or not a terminal is attached.

I. If there is a terminal attached, pressing CTRL Y will interrupt the experiment and
present the highest level menu in the diagnostic subsystem. The experiment can
be resumed by making choice

65

I

Z. Exit this menu.
To terminate the experiment completely, make choice
A. Software Reset.

If there is no terminal attached, simply remove power from the svstem. This is, in
fact, how the experiment will be terminated at the end of a space flight (if the bat-
teries last long enough.) Attaching a terminal and applving power will put the
control program into the diagnostic subsystem.

The results of the experiment can be evaluated by making menu choice
Examine or change the data logged in the bubble memory.

The following is a list of the various conditions under which the experiment has been

tested. The conditions are listed as applyving and not applyving, where this is meaningful.

All these conditions resulted in satisfactory performance by the controller.

1.

2.

LI

w

Terminal present; terminal absent.

Unabridged experiment to be performed; abridged experiment to be performed.
Sweep phase previously performed; sweep phase not previously performed.
Launch had occurred previously; launch had not occurred previously.

Bubble memory space exhausted during test. The controller correctly ceased trving
to store more data and continued to operate normally without logging its actions.
This could not be verified without the terminal attached, for with neither a ternunal
nor a bubble memory log. the controller does not generate enough outputs for
proper verification of its performance. There is no reason to suppose that the re-
sults would be different with the terminal removed, however.

Temperature out of limits. Operation of the bubble memory ceased. Power was
applied to and removed from the heater subsystem bv commands to the power
control subsvstem. These commands were issued by the subprogram responsible
for monitoring the heater's operation, namely monitor_heaters(). Although the
heater subsystem itself has not vet been completed. the associated power relayvs
switched correctly.

Detection of the Auxiliary Power Units (APUs) by the Matched Filter was and was
not emulated by toggle switch. The controller responded correctly in both cases.

Detection of launch by the Vibration-activated Launch Detector was and was not
emulated by toggle switch. The controller responded correctly in both cases.

Activation of the Barometric Pressure Switches was and was not emulated by tog-
gle switch. In the absence of activation of the barometric pressure switches, the
presumption is that launch did not occur. The controller responded correctly in
both cases.

10. Power was removcd abruptly at various points in the procedure and then was re-

stored. The controller recovered in the desired manner.

66

After each test, the contents of the bubble memory log were examined to see what steps
in the experiment had been performed. Two obvious differences were found between the
system's behavior with and without a terminal attached. One of these was that with a
terminal attached, the diagnostic messages issued during the performance of the exper-
iment were visible. The other was that with a terminal attached, the diagnostic subsys-
tem did not get control. No other difference could be found between svstem behavior
with and without a terminal attached.

There is every reason to believe that the control program will work as well in the
Space Shuttle as it has in the lab. The same tests should be performed again once the
hardware is completely integrated. The only tests which have not already been done are
those associated with the operation of the Solid State Data Recorder (SSDR). The
interface with this device is very simple. The controller sends commands and reads sta-
tus information. The SSDR is otherwise completely independent of the controller. We
have already asccrtained that the application of power to the SSDR through the power
control subsystem is done correctly. We have also verified correct response to a failure
oi the SSDR to perform as expected. The only thing we have not tested is the response
of th- control program to correct responses from the SSDR. Since the response amounts
to making a note of the correct response in the bubble memory log, we do not anticipate
any difficulty in this area. The abilitv of the controller to send commands to the SSDR
has been tested, although the response of the SSDR to these commands cannot be
evaluated until the final version of the SSDR is complete.

The means of extraction of data from the bubble memory log are not very elaborate
at this point. Data can be extracted for two experiment steps at one time by providing
the number of the page in the bubble memory log whose contents are required. No ca-
pability has been provided for rapid extraction of all data to. sav, a microcomputer. This
does not pose a serious problem, but data extraction would be facilitated by providing
subroutines to do it quickly.

67

VII. CONCLUSIONS

The Vibro-acoustic Experiment was the first experiment produced at the Naval
Postgraduate School for inclusion in a Space Shuttle mission. In view of the consider-
able technical hurdles it presen.ed, it is fair to say it has been a very ambitious project.
It has included many disciplines, such as mechanical engineering, thermal engineering,
digital electronics, analog electronics, acoustics, bubble memory technology, auton-
omous computer control, software development, a matched filter for detecting an im-
pending space shuttle launch, power control, and computer-aided design and
manufacturing (CAD, CAM).

This thesis has concerned itself with overall control of the experiment and with a
description of one subsystem, the matched filter. It was not possible to do this without
considering the experiment as a whole. From the author’s personal standpoint, this has
been very gratifving. We have used a high-level programming language to do the bulk
of the programming of a microprocessor-based controller, thus avoiding the labor-
intensive burden of assembly language coding in most areas of the program. We have
effectivelv integrated this code with the little assembly code required. We have written
drivers for assorted hardware devices, such as a terminal, a bubble memory module and
a real-time clock, thus demonstrating the close association between hardware and the
software which makes that hardware more than a glorified paper-weight. We have used
structured programming techniques throughout, thus aiding the design process, as well
as the understanding of the documentation represented in part by this thesis. We have
created a conveniently-used software development system, making it straightforward to
edit the source files, compile or assemble them, link the object modules, list source files
on a printer, and place the executable file in EPROM.

This work may benefit others who would like to implement other applications. We
have made it possible for them quickly to get a device controller programmed and op-
erating, since so many standard controller functions already exist. The C programming
language is highly portable, so much of this work would apply even with a new hardware
design, .ag, say, a faster microprocessor with more memory.

Two other projects have already benefitted from the work done here. In one, the
experimenters plan to obtain voltage versus current for solar cells in space. In less than

two months, the complete control program for that new application was designed and

68

tested using the same controller and much of the software we have described in this
thesis.

In another project now underway, the author is involved in the experimental evalu-
ation of a thermo-acoustic refrigerator in space. The details of the experimental proce-
dure in both these cases differ, but the overall fundamentals of control of an experiment
are the same. Consequently, much of the software described in this thesis can be used
without any modification.

For anyone who wants to build a controller with modest requirements for speed and
RAM, the controller we have used in the Vibro-acoustic Experiment would be suitable.
By using the work described in this thesis, one can avoid the unpleasant burden of
starting from scratch. The bubble memory module provides a further 300K byvtes of
random access, non-volatile memory for whatever purpose might be required.

Work remaining to be done is:

1. Desigr, build and test an improved controller which would operate with more
memory and greater speed.

2. Convert the existing software to run on the new controller. This would entail re-
placing the start-up code and other machine-dependent assembly code. and re-
compiling the C language source code using a compiler which would generate
machine-language code for the new target machine. Software Development Svs-
tems, Inc.. makes C language cross-compilers which would allow most of the ex-
1sting set-up to be preserved intact.

3. Modifv the existing bubble memory drivers to permit storage of files. At the mo-
ment, the bubble memory is regarded as a linear list of 64-bvte chunks of memory.
Greater usefulness would result from the provision of a file subsvstem.

4. Produce a manual for other potential users of the software and hardware that
would make it easy to get new applications up and running quickly. This could be
supplemented by improved routines to facilitate the generation of executable code.
At the moment, these routines are specific to the Vibro-acoustic Experiment in that
they always look in the subdirectory \vibro\contrlr for the files thev need. In gen-
eral, they should permit any subdirectory to be used to hold the files. The exper-
iment to evaluate solar cell performance used a series of files and subdirectories
whose structure exactlv mimicked the set-up described in this thesis, but no rou-
tines have been written to set these files up automatically.

5. Develop or acquire a software maintenance system. Such a system would provide
better management of successive versions of the control program. It would also
include a data dictionary to provide a definition of all variables and functions,
along with a complete cross-reference showing every place these objects were used.
What would the data dictionary gain us? It often happens that in the course of
making changes, we inadvertently affect other parts of a svstem. The data dic-
tionary would make it possible to find all those places and take appropriate action.

69

Microprocessors have now been in use for just a little over 15 vears. The use of
compiled programs to operate them is an even more recent development, since compiled
programs generally take up more memory space than assembled programs, and abun-
dant memory at low prices is available. There are two distinct advantages to using a
compiler:

1. The code is easier both to write and to understand. This makes it easier to get
applications running, and to modifyv them later, even if team members change over
a period of time.

2. The code is much faster to create. This often makes the difference between success
and failure, since time can be critical, particularly in an educational environment.
Often these advantages outweigh the disadvantages:
1. The code tends to take more memory.

2. The code tends to execute more slowly.

In the case of the Vibro-acoustic Experiment, these factors were of no great conse-
quence, except as already noted in conjunction with the bubble memory module. We
were forced to use assembly code to operate the bubble memory in order to keep up with
the data transfer rate demanded by it. Ilad there been an adequate bufler in that hard-
ware, this extra effort could have been avoided.

In fact, this last point makes it clear that good hardware design can greatly reduce
the effort (i.e., the costs) associated with software development. It is hard to believe that
the job of implementing a 64-byvte buffer in hardware would be much more difficult than
that of implementing a 40-bvte buffer. Had Intel done this, we would have been spared
months of development difficulties, during which we did not understand the reason why
the C code did not work.

Finally, the use of a compiled language which is highly portable (in particular a
compiled language such as C) can help protect the investment of time and money in
software which is otherwise threatened as obsolete ha~dware is replaced by improved
hardware. In the software industry, endless conversions from one hardware system to
a new one seem to be a permanent nuisance. The ability to take old programs and make
them work on new hardware simply by recompiling them is attractive.

Another potentially useful step would be to implement the controller software using
Ada, the Department of Defense compiled language now mandated for embedded soft-

ware in all purchased systems. This would have the advantage that Ada programmers

70

are likely to become more and more numerous over time. This would help keep the work
already done both current and useful.

71

APPENDIX A. DERIVATION OF DESIGN EQUATIONS FOR THE
MATCHED FILTER

This appendix presents derivations and proofs of results used elsewhere in this thesis.

A. BIQUADRATIC FILTERS USING TWO OPERATIONAL AMPLIFIERS

Figure 7 on page 27 shows the topology of a generalized biquadratic filter using two
operational amplifiers. This topology is taken from Michael [Ref. 15]. In this figure, Y
denotes an admittance (the reciprocal of an impedance). Michael gives ideal transfer
functions in the s-domain from the node marked V,, to the nodes marked 1, V., and
;. We will have occasion to use the first two of these. Since Michael does not provide
derivations for these functions, they are provided below. Note that the term “ideal”
implies the use of operational amplifiers of infinite gain. While no such operational
amplifiers in fact exist, there do exist operational amplifiers of veryv large gain. and the
approximation is practical in many circumstances, especially at the low frequencies used
in the Vibro-acoustic Experiment (i.e., the 600 Hz tone from the Auxiliary Power Unit).
For example, the open-loop gain of the LF-444 operational amplifier i1s more than
60 dB at a frequency f= 600 Hz.

From the Kirkoff current law, and referring to Figure 7 on page 27, we have

17 = IS - 14 (3())
Iy =~1. (37)

We can find the currents I, through I, by applving Ohm's law.

I, =(V, = V)Y, (38)
L=V, - VY, (39)
L=(V;-Vy)Y; (40)
I,=(V, = V)Y, (41)
Iy=(V5~ 17,y)Ys (42)

72

L=(Vy- V)T, (4d)
Iy=V,Y;. (45)

By substituting these currents into equations (35) through (37), we obtain the following
three, independent equations.

(N = V)Y, =(Vs— Vi) Ys+ VsYe (46)
(Vin= Vb= VY + (Vs =)Y, 47)
(F=T)Y, == 1)L, (48)

Collecting these terms vields

Fs(+ Yo+ Y =+ 14k (49)
Fy(Ya+ Yo+ Yy = 1Y, + Vi (50)
]”4(}.] '+' }’3) = I’l }'l + "2)'3. (51)

In an ideal operational amplifier, the inputs have equal voltages, so we can write

V,=V,= V,. Rewriting the equations with V; in place of I, and I, gives

Vo + Yo+ Yo) =1 Y, + 1Y (52)
Vi(Ya+ Yo+ Yg) = 1Y+ Vil (53)
Vi) + Y3) = VY, + V) 15, (54)

These equations can be readily solved by placing them in matrix form first.

,+Ys+Y, 0 =Y]v Y,
Y4 + Y7 + Ya - Y4 0 V2 = Y7 V’N' (55)

Now interchange the positions of V, and F.

73

0 Y2 + Ys + Y6 - Y2 Vz Ys
-Y, Yv+Y, -=1|w 0

Next we move row 3 to the top.

- Y3 Yl + Y3 - Y] V2 0

Next, multiply row 1 by Y, row 3 by Y}, and subtract the latter product from the
former to generate a new row 3.

- Y, Y, + Y, -1, I[w 0
0 Y2 + YS + Y6 - Y2 I',3 = }’5 ,',1_‘\'. (58)
0 -+ +T)+1LY,+Y;) —HIL|| W -5Y;

Now multiply row 2 by [= ¥y(Y,+ Y-+ Y) + Y (}, + 1)) row 3 by (}, + Y.+ 1)
and subtract the latter product from the former to generate yet another row 3.

-)'3 Yl + Y3 - Yl ":
0 Yz + }.5 + YG - Yz "3
0 0 — VYUY + Vs 4 Yo+ B[= Ya¥a+ Y-+ ¥ + Ya¥y + ¥l || 1 "
d
0 (927)
= ¥s Vix-
= VYAV + Y5+ Vo) = Vs = F3(Yo+ Vs + Yg) + V(¥ + ¥yl
From row 3, we can see that
Vi =Y+ Vs+ V)= Vil = V(Yo + V- 4+ V) + V(Y + Hi)] (60)
Viv — =NV + Y5+ Y+ 1l = Va(Ya+ Yo+ Yy) + YV, + 13)]
Vl _ - Y3Y7(Y2+ Ys)—)"3Y5Y7+ Y3Y¢Y5+ Y3Y5Y7+ Y3Y5y8- Y, }'4)’5- YgY.‘YS 61
Vv~ = T Va(Vs % Y = Vi TaFam o1y = ThH Vs = TRy + F e Tabyty © OV

Many terms in the numerator and in the denominator of this expression add to zero,
so the transfer function is

Vi =11+ Y)+ VY Yy— T Y,
Vi =YY+ Ye) = L1 -

74

Fls) | MY Y+ 115+ B) = K YY,

- = ——— > T 63
Vins) VY (Ys+)+ Y1 + V) (63)
V. v,
This completes the derivation of 7% To derive the transfer function Vz((SS)) , we
. modify equation (55) by placing the variable ¥, in the last position. a

- Y2)"2 + YS + Y6 O Vl Ys
0 Y4 + Y-, + Yg - Y4 V3 = Y-; le'\" (64)
- Y) Yl + Y3 b Y3 I/2 O

Proceeding as before, we multiply row 3 by — Y, , row | by — ¥, and subtract the

former product from the latter to generate a new row 3.
- YZ YZ -+ YS + Yé 0 ;/l).5
0 }’4 + }"7 + }'8 - }’4 L"B = }'7 lf’l.\" (65)
0 L+ s+ 1) -+ 13 KL, Y)Y

Next muluply row 2 by [1(Y, + Y+ V)= (Y + 19], row 3 by (Y, + 1.+ 1),
and subtract the latter product from the former to vield a new row 3.

~ Ty, Yat Y54 ¥, 0 Y

0 Yo+ V-4V ~ 1 by
: 0 0 DY+ Y+ Yy + YLV + Vs V) = Vot + Y || 47 66
(00)

)"5
= Y" x’]‘\'.
VIVs(Ya+ Fad Yo = Y-[Y)Yy + Vs + Yg) = Yol ¥ + V3))
From row 3 we can see that

V, ViVi(Yi+ Yo+ V)= YV Vo(Yo 4+ Y+ V) + Vo Y5(Y + 1) 67)

Viv N V(Ya+ Vot Vo) + ¥, Vy(Vy 4 Vs + V) = YoYy(Y, + 1y)

As before, many terms in both the numerator and the denominator add to zero, so

. V2 _ Yl Ys(YA + Ya) + Y2 Y3 Y7 - YI Yé Y7
Viv 5V + Yg) + Vi Ya(¥s + ¥)

(68)

75

It is possible, using the same method illustrated in both these cases, to develop a
3

Fids)”
context, however, so the derivation is omitted.

transfer function We have no use for this particular function in the present

B. HIGH-PASS NOTCH FILTER
The equation of a notch filter is given in equation (6), repeated here.

2 2
ST+ w,
N . (6)
sz+(-w—p)s+w2
Op ?

F(s)=

Michael [Ref. 15] shows how to use the generalized configuration of Figure 7 on
page 27 to implement this function in the case where w, = w,, which is the case for a
symmetric notch filter. However, he does not show how to implement an asymmetrical
notch filter, in which o, # ..

We can do so by using equation (63) and making the following choices for the
adnuttances Y, through 15

h=C, (69)
1, =sC, (70)
Y3 = Cb (7[)
Y=Ys=0= "';T (72)
Y, =0 (73)
Y7 = SCb (74)

G
Yy =— (75)

8 Qp

where we pick

w, = —% (76)

and

76

G 9 \2
c Qp[l —(o)] (77)
Proof
2, 2, 2 GG’
v, _ C.G +3CaCb"_Q:"
Viv' 6% +s2c,ct +sC,c,-L
1
G \2 G’
st + -
_ (Cb> CCpr
G
+ +
J (G)s .G)
s +(-£)2[1 2.]
_ \ Cb Q (78)
SR G
s + s+ | —=
(Cs)p) (G,
i s+wp[1 (1 [—])]
—1 P w
o2
. s +<-Q_> Wp
_ 52 +a)_,
S) 2
S+ =T s+
(g s

Using resistance values instead of conductance values in equations (76) and (77),

we get

(79

and

7

C. LOW-PASS NOTCH FILTER

Y\ =Y;=0G,

where we pick

and

78

(80)

To get a low-pass notch filter, we use equation (68) and pick admittances as follows:

(81)

(82)

(83)

(84)

(85)

(86)

(87)

Proof

Gy 2
Gi G, + ==) +5°C*G,
v, Cp

Vl N

G,G,
GG, + s*C G, + sC ——=
Qp

S*(G”)+(Gc”) 2
) (&)
] (88)

]

Converting equations (86) and (87) to use resistances instead of conductances, we

get the design equations

Seof (2]

and

Ry (90)

79

D. A SECOND-ORDER, LOW-PASS FILTER USING ONLY ONE
OPERATIONAL AMPLIFIER

Figure 14 on page 36 is the schematic of a generalized second-order, low-pass filter.
The general equation of a low-pass biquadratic filter is given by [Ref. 12 : p. 16] as

2
Vols) _ wp

Vins) w)
i s2+(—p>s+wz
O

on

This transfer function can be realized by the schematic in Figure 14 on page 36 if
we make the following choices for the components.

1

and
0,= /= éRZ e (93)
Proof
I = VysCy = I";:"’ (94)
I, =(V, =~ V)sC, (95)
I = V’"R' a =L+ (96)
1
From equation (94),
Vo= Vo[l +sCGR,] (97)
or
V,~ Vo= VysC,R,. (98)
Thus

80

and

We can manipula

Vo

Va - VO
Iy = (V, = Vp)sC, +--—-7€;--
= Vo[SZCICZRz +SC2]
VI.V_ Va
R,
Viv=Voll +sGR,]
R, ’

te this equation to obtain the transfer function.

Vol s*CGRR, + sCR, + 1+ sCRy | = V)

1

Viv

"~ S3C,GRR, + sCo(R, + Ry + 1

1
(CiGRR,)

—2+(R1+R:)s+ 1
S TTCRR, C.GR R,

2
W,

w)
2 P 2
(QP> i

If we choose R, = R, = R, then

81

(99)

(100)

(101)

(102)

(103)

To design a filter to provide desired values of w, and @, , use the design equations
which can easily be derived from the above equations.
1. Pick G, arbitrarily.
2. Let G, =4C0:

1

3. Let R|=R2=R=—_’-=c
wp\j CICI

82

APPENDIX B. CHOICE OF A SOFTWARE DEVELOPMENT SYSTEM

A. Z-80 ASSEMBLY LANGUAGE

The Vibro-acoustic Experiment has a fairly long history. Long before the author
became associated with the project, two distinct choices for a software environmentl$
had already been made. Early in the project we used Z-80 assembly language for pro-
gramming the controller. An ALTOS eight-bit microcomputer running under Digita}
Research Corporation’s Control Program for Microcomputers (CP, M) was available.
It included a Z-80 assembler (M80), a librarian (LIB80) and a linker (L80). However,
the turnover in student personnel is rather high at any educational institution; the Naval
Postgraduate School is no exception. Assembly language is often not the best choice for
a project whose participants do not remain for the life of the project, since assembly
language is not widely known, is not easyv to learn, and is highlv dependent on the ar-
chitecture of the machine in which the final program is to operate. Many different ar-
chitectures exist, and most machines have unique architectures. Even those who know
how to program with assembly language often are averse to expending the vast amounts

of time required to use it for any but the most trivial programs.

B. CP/M AND TOOLWORKS C

As a consequence of these facts, one of the early participants in the project suc-
cessfully promoted a switch away from Z-80 assemblv language to the C programming
language. This high-level language includes powerful operators which make it easy to
manipulate the bits within the bytes of the computer’s memory. and so it can do almost
anything that can be done in assembly language. The same ALTOS CP'M system
happened to have Toolwork’s C compiler on it, and so we used it.

When the author joined the project, little progress had been made in actually writing
the control program. With Captain Frank Mazur, USMC, and Captain Ron Byrnes,
USA, the author wrote much of the control program on the ALTOS under CP; M using
the Toolwork’s C compiler.

15 The term software ervironment refers to the computer, the operating system. the program-
ming language. and all related software and hardware tools used to program a computer. The
¢ mputer on which the development of software is done need not necessanly be the same one as
that in which the completed program will reside and be executed. In the case of the Vibro-acoustic
Experiment, it is not the same computer.

83

Doing so proved to be a frustrating business. The ALTOS was equipped with two
eight-inch, single-sided, single-density, floppy diskette drives. These could contain only
around 250 Kbytes of data. One drive had to contain a copy of the CP. M operating
system at nearly all times. The ALTOS was quite slow by present standards; it was not
uncommon for a compilation to take five minutes. Due to the limited disk space avail-
able, the output of the compiler (an 8080 assembly language source filel6) had to be
transferred to another diskette before assembly could proceed. Assembly tvpically con-
sumed a further five minutes. The library program was quite inconvenient to use, but
once the executable modules had been loaded successfully into a library, linking was
straightforward. This was a comparatively quick two-minute process.

Our EPROM writing program was on an I BM-PC using Microsoft's Disk Operating
System (MS DOS). Furthermore, that machine had only 5 1 4 inch diskettes. So we
took our eight-inch floppies to a Zenith Z-100 that had both sizes of drives, where we
converted the CP M file containing executable code into an MS DOS fileona 3 1 4inch
diskette.

Finally., we loaded the executable program from the diskette into the
EPROM-writing program and created the {irmware.

C. DMIS/DOS AND UNIWARE C

It should not have taken us too long to tire of this agonizing procedure. In fact, it
was over a vear before we began seriously to search for an improvement in the form of
a cross-compiler. We wanted a C-language compiler which would operate on an IBM
PC using MS DOS, and which would generate Z-80 object code. Several were available.
We selected the UniWare C Compiler package from Software Development Systems.
3110 Woodcreek Drive, Downers Grove, 1L 60515, This product is a complete software
development system. It includes a C compiler which produces Z-80 assembly code, a
Z-80 assembler, a library manager to store object modules in a single MS DOS library
file, a linker to convert a collection of object modules into an executable file, and a large
collection of utility programs, useful for listing files, converting files from one format to

another, and so on. The compiler implements the complete C language defined by

16 The Toolwork's C compiler generates 8080 assembly language source code. The NSC800
on the controller board can execute Z-80 code, a subset of the NSC800 instruction set, and the 8080
instruction set, which is itself a subset of the Z-80 instruction set. We had an assembler for Z-80
and 8080 code. We needed two Z-80 instructions not available in the 8080 instruction set. So we
embedded Z-80 machine code in the 8080 assembly source created by the C compiler and executed
the resultant module with an NSC800. It really was at least as complicated as it sounds’

84

Kernighan and Ritchie [Ref. 16]. It also includes enhancements similar, but not identi-
cal, to those proposed by the American National Standards Institute (ANSI).

It took a hittle time to convert from the old to the new syvstem, but the results were
well worth the effort. Because the performance of the IBM System 2 Modcl 80 on which
we run this system is so much greater than that of the Altos, we are able to generate a
new version of the controller program in much less time. The use of MS DOS also has
provided significant benefits. We have made extensive use of hierarchical file directories
in order to group files in a logical manner. We also use MS. DOS batch files to minimize
the amount of memory work necessary to execute such programs as the compiler and
the linker.

The documentation supplied with the UniWare system [Ref. 17] is excellent. Unlike
most C compilers, this one is not meant to produce executable code running under an
operating svstem. For this reason, much of the standard library supplied with other C
compilers is not applicable, and is not supplied. In particular, no library functions are
provided to perform disk input or output. However, common output formatting rou-

tines such as printf() are included.

D. GENERATION OF FIRMWARE IN EPROM

We use the Intel program pepp to load the completely linked program into EPROM.
The UniWare software can create a symbol table showing what should go where. Armed
with this list, one can load, install, and test the new version of the program in short or-
der.

Details on the operation of this program are presented in Section 2. Getting the
Executable Program into EPROM on page 146.

85

APPENDIX C. HOW THE UNIWARE SOFTWARE USES THE
COMPUTER MEMORY

The UniWare software regards memory as comprised of a number of named regions.
The C compiler itself creates five of these [Ref. 17: Compiler section, p.3). These are the
regions code, string, const, data, and ram. There are three further software regions:
reset, mbrkram, and stack. The purpose of each region is described below. The linker
treats each region as a unit and places its contents in memory in contiguous storage lo-
cations. It decides how to do this based on instructions in the file
\vibro\contrir\object\spec. The order in which these regions appear in memory is speci-
fied in this file. and reflected both in Figure 19 on page 44, and in the order in which

they are described here.

reset The Z-80 architecture specifies that the program code stored at memory
location O0x0000 be executed whenever the microprocessor receives power
or a hardware reset occurs. The reset region contains an appropriate
start-up program. This program does the following:

1. It initializes the stack pointer to 0x0000. Whenever an item is stored in
the stack. the stack pointer is first decremented. Thus. the stack pointer
will initially be decremented to OXfIII, the first location in the stack. and
will continue to grow downward in memory from this point.

2. It initializes the interrupt tables in such a manner that, should a spurious
interrupt occur. the control program will restart from the beginning. It
would be preferable to resume execution by simplyv returning from the
interrupt. This would raise the unacceptable possibility, however, of an
indefinite suspension of the execution of the program if some unpredict-
able cause led to the problem. While restarting has the disadvantage of
totally disrupting matters, its compelling advantage is that execution re-
sumes from a known state, barring a complete catastrophe.

code This region contains all program instructions generated by C and assembly
language source code. It includes code to do the following things:

1. Program variables must be in RAM to be altered. In the C program-
ming language it is possible to assign initial values to these variables at
the time a program is compiled. These values must be placed in
EPROM, since otherwise thev would be lost. One of the routines in the
code region is invoked at start-up time to copy initialized variables from
their permanent locations in region data in EPROM into temporary lo-
cations in RAM. Thus in Figure 19 on page 44 region data appears in
two locations, both in EPROM and in RAM.

86

2. The definition of the C programming language specifies that staticl? and
externall8 variables which have no initial value specified in their decla-
rations must be initialized by the compiler to the value 0 {Ref 16: p.198].
One of the routines in the code region is invoked at start-up time to put
zeros in all RAM locations in region ram.

3. Another routine which is invoked at start-up time calls the C program
main(). This is the highest level program in C. It calls subordinate
routines to operate the controller and run the experiment itself.

string Whenever the compiler finds a quoted character string in the source code,
it places it in the string region. Since strings are treated as constants, they
can be kept in EPROM.19

const Variables declared as const are regarded by the compiler as invariant, or
constant, so it is reasonable to place them in EPROM.

data This region contains variables whose initial values were specified at the time
of compilation. These values are placed in EPROM by the linker so that
thev will not be lost when power is removed from the controller. However,
variables must be in RAM when the program executes. During the start-up
procedure, they are copied into RAM.

ram This region contains variables whose initial values were not specified at the
time of compilation. These are initialized to 0 at the time the program is
first invoked. as specified in Kernighan and Ritchie [Ref. 16: p. 198].

mbrkram The UniWare C compiler provides a function mbrk() to permit a program
to request storage at run time (ie.. dvnamically). The mbrkram region
provides mbrk() with the storage it needs.

stack The program stack is located here, at the top of memory.

The linker ensures that items within a region are stored contiguously. The compiler
decides where to put these partitions in memory by examining a memory map provided
in the specification file \vibro\contrir\object\spec, listed in Section A. Filename spec on
page 130. The format of this file is described in [Ref. 17: Link Editor Section. p. 7].

The memory map specifies that reset be loaded at address Oxu000, that the stack
grow down in memory from address OxfITf, that EPROM is available from addresses
0x0000 through Ox5fIT, and that RAM is available starting from address 0xe000 through
OxfHIT.

17 Static variables retain their values even after the program which declared them finishes ex-
ecuting.

18 External variables are declared in some module other than the one in which a program using
these variables is defined.

19 In general. to modify strings a programmer must first place a copy of them into a vaniable.
Dynamic variables are always located in RAM, since their contents are changeable.

87

APPENDIX D. HIERARCHICAL ORGANIZATION OF SOFTWARE
FILES

All the software to control the Vibro-Acoustic Experiment is located in the file hi-
erarchy illustrated in Figure 35 on page 89. Following is a description of the contents

of each of these subdirectories.

A. SUBDIRECTORY \VIBRO\CONTRLR\HEADERS

This subdirectory contains header files for the C language source code. The header
files allow numeric constants which are used in creating the program to be specified
svmbolically. By avoiding the use of “magic” numbers in the source code. the code is
rendered much more readily understood. The header files also contain external declara-
tions of the functions and variables contained within a module. Whenever one module
needs to use the functions or variables of a different module, it can obtain correct dec-
larations of them by including the appropriate header file using the C programming

language #include directive.

B. SUBDIRECTORY \VIBRO\CONTRLR\CSOURCE
This subdirectory contains C language source code for the parts of the controller

program written in the C programming language.20

C. SUBDIRECTORY \VIBRO\CONTRLR\ASMSOURC

This subdirectory contains Z-80 assembly language source code. A few of the lowest
level routines in the controller software have been written in assembly language, but only
when there was no apparent way to write them in C (e.g.,input(), output()), or when the
C compiler couldn’t generate code which would execute rapidly enough (e.g., bubread()
and bubwrite()).

D. SUBDIRECTORY \VIBRO\CONTRLR\BATCH
This subdirectory contains a number of MS/DOS “batch” files. These contain se-
quences of commands which make it easier to compile programs, print listings of the

source code, link object modules, and load executable modules into EPROMs.

20 This comprises most of the controller software.

88

Hierarchical Root
Organization Olrectory
of Software

Eiles Vibro-acoustic
Experiment
Software
Controlter
\contrle Soltwere

(o) () (o) (o) (o) (o)

Headers for Source Source 8atch Assembly Assembly
C Progrsms Code lor ¢ Code for Command Listings Object
Programs Assembler Files Flles
Programs

Figure 35. Hierarchical Organization of Software Files: The software files are
grouped into several diflerent sub-directories to facilitate finding and

managing them.

E. SUBDIRECTORY \VIBRO\CONTRLR\LIST

This subdirectory contains output listings produced either by the C compiler or by
the Z-80 assembiler.2! Those created from C source code include that code in the form
of comments to the Z-80 assembler. They are stored in this subdirectory only as a
matter ol convenience, in order that theyv not clutter up the directory listing of the sub-

directonies containing the source code.

F. SUBDIRECTORY \VIBRO\CONTRLR\OBJECT
This subdirectory contains object modules produced either by the C compiler or by
the Z-80 assembler. They are stored in this subdirectory only as a matter of conven-

ience, in order that they not clutter up the subdirectories containing the source code.

21 Those produced by the C compiler are actually assembly language listings produced by the
Z-80 assembler. The latter is called by the C compiler.

89

This subdirectory also contains the link specification file spec. This file provides the
linker with information needed to decide where the various regions of the program must
be loaded. A number of global variables are set by this file at link time.

For details on how to use a link specification file, see the discussion in
[Ref. 17: Link Editor Section, p. 7).

90

APPENDIX E. SUBROUTINES, IN ALPHABETICAL ORDER BY NAME

Table 8. SUBROUTINE INDEX: This table shows the names of the MS.DOS
files in which each subroutine can be found. Subroutines are listed al-
phabetically by name.

SUBROUTINE 5(}‘&?5 PURPOSE

Gets a character of data from the Analog-

ad_read() expmnt.c to-digital (A. D) Converter.
Converts a character of raw data from the
adtoint() expmnt.c Analog-to-digital (A D) Converter into an

integer format with the more meaningful
units of volts or degrees kelvin.

Permits the user to alter the contents of page
alter_page0() expmnt.c 0 of the bubble memory. This is required in
initializing the experiment.

Processes the special characters CTRL S and
CTRL Y when read from the kevboard.
CTRL S is a toggle switch. The first time it
is pressed. the display halts. The second time
it is pressed. the display resumes. Subse-
quently its function alternates between these
two. CTRL Y invokes the diagnostic sub-
system.

allow_ctrl_interrupts() | inout.c

Converts an ASCII string representation of
a hexadecimal byte into the corresponding
hexadecimal byte. For example, the string
“a3” is converted to the byte value Oxa3.

atoh() convert.c

Converts a four-byte ASCII string repres-
enting a two-byte hexadecimal word into the
atohexint() convert.c corresponding hexadecimal word. For ex-
ample, the string “a34b” is converted to the
word Oxa3db.

Converts a string representing a decimal in-
atoi() convert.c teger into the corresponding integer. This
subroutine is from Bilofsky [Ref. 18].

This routine is used in the abridged exper-
iment to prevent record mode from being re-
bad_idea_to_record() | expmnt.c started after a power fault. Without this
safeguard, perfectly good data recorded dur-
ing launch might be erased.

91

baro_switch()

expmnt.c

Checks to see if the barometric switches have
been activated vet. If so, launch must have
occurred and an appropriate log entry is
made.

bed_asc()

convert.c

Converts a BCD byte to the corresponding
character string representation. For exam-
ple, Ox17 is converted to “17".

bed_int()

convert.c

Converts a one-byte BCD number to integer
format.

bpageset()

bubble.c

Loads the five parametric registers in the
bubble memory controller. Most of these
never change. Two, however, do change of-
ten. These two specify the page of bubble
memory where transfers of data begin. Call
this function prior to any operation per-
forming input from or output to the bubble
memory to ensure the parameters are cor-
rectly specified.

bubcmdmenu()

bubble.c

Displays a menu of Jow-level bubble memory
controller commands. These are useful in
testing the bubble memory for proper oper-
ation.

bubinit()

bubble.c

Initializes the bubble memory prior to its
being used. This initialization must always
be done after power is applied and before
input and output operations begin.

bubio()

bubble.c

Performs input from and output to the bub-
ble memory.

bubmenu()

bubble.c

Provides a menu of functions permitting the
user to perform operations with the bubble
memory. These operations include:
1. applving and removing power,
2. initialization,
3. input,
4. output and
5. reading
the status of the bubble memory.

bub)_oﬂ'()

bubble.c

Removes power from the bubble memory.

bub}on()

bubble.c

Applies power to the bubble memory.

92

bubread()

bubrw.s

Takes care of the actual transfer of data from
the bubble memory to the controller memory
during a read. This routine was written in
assembly language in order to achieve a data
transfer rate of 16 K bytes per second im-
posed by the bubble memory hardware.

bubwrite()

bubrw.s

Takes care of the actual transfer of data to
the bubble memory from the controller
memory during a write. This routine was
written in assembly language in order to
achieve a data transfer rate of 16 K bvtes per
second imposed by the bubble memory
hardware.

bubxfer()

bubrw.s

Part of the sequence of steps necessaryv to
initialize the bubble memory entails trans.
ferring the byte OXfT to the bubble memory
40 times. This routine does this. The rou-
tine is written in assembly language for
speed. but is called in the same manner as a
C routine.

checkprt()

expmnt.c

Checks to see whether or not there is a ter-
minal connected to the RS-232C serial inter-
face port.

clockint()

clock.c

Dates and times in the real time clock are
stored in BCD format. This routine converts
them to integer format to make it convenient
to perform arithmetic with them. Thus, fu-
ture dates and times can be computed.

clockread()

clock.c

Reads the current date and time from the
real time clock.

clockcompare()

clock.c

Compares two clock times to see which one
1s later than the other.

clockset()

clock.c

Sets the current date and time in the real
time clock according to values specified by
the user.

clocksum()

clock.c

Adds two dates and times together to
produce a new date and time. In practice,
one uses this to calculate a future date and
time from the current date and time and
some desired delay (e.g., 15 minutes).

colder_than()

expmnt.c

Returns the value TRUE if the bubble
memory's temperature is below the temper-
ature given in the argument to the function,
FALSE otherwise.

ctoh()

convert.c

Converts a single character to its
hexadecimal ASCII string representation.
For example, 0xal is converted to “a3”.

93

delay()

delay.s

Provides a software-driven time delay in in-
crements of 10 ms. Written in assembly
language, but used like a C language routine,
Adapted from a program by Mr. David
Rigmaiden of the Naval Postgraduate
School.

display_page0()

expmnt.c

Displays the contents of page 0 in a readable
format.

display_data_page()

expmnt.c

Displays the contents of any page in the
bubble memory in a readable format. [t will
not successfully display page 0. Use
display_page0() for this purpose.

do_sweep()

expmnt.c

Causes the sweep phase of the experiment to
be performed.

dump()

inout.c

Produces a hexadecimal and ASCII dump
of any desired region of memory.

dump _fclock()

clock.c

Display the date and time on the terminal.

dump_iclock()

clock.c

Display the date and time on the terminal.
This differs from dump_clock() in that the
dates and times it uses are integers, not Bi-
nary Coded Decimal (BCD) rumbers.

echo()

inout.c

Sends a single character to the terminal.

expmnt()

expmnt.c

Causes the Vibro-acoustic Experiment to be
performed.

fputc()

fputc.c

The UNITWARE compiler provides the
standard C output routine printf() to provide
output to the standard output device. How-
ever, this routine requires the user to provide
a routine fputc() to handle the output of a
single character to any' arbitrary device. We
only support output by fputc() to the
RS-232C terminal, so this routine is specific
to that device. The routine will nor output
a character if, upon checking, it finds there
is no terminal attached to the serial interface
port. Thus, when the experiment is operat-
ing, calls to printf() are of no effect unless
there is a terminal connected.

gethex()

inout.c

Inputs a string representation of a two-digit
hexadecimal number from the terminal and
converts it to hexadecimal format. For ex-
ample, “3a” is converted to 0x3a.

gethexint()

inout.c

Gets a four-digit hexadecimal number in
string format from the terminal and converts
it to a hexadecimal word. For example,
“3ab2” is converted to Ox3ab2.

94

getint()

inout.c

Inputs a string representation of a decimal
integer from the terminal and converts it to

integer format. For example, “352" is con-
verted to 3352.

getpageno()

inout.c

Asks the user for a page number in bubble
memory.

get_time()

clock.c

Obtain a valid date and time from the user.

inithardware()

initial.c

Initializes the six ports on NSC810A #1 and
#2.

input()

newio.s

Inputs a character from a port. Written in
assembly language, but used like a C lan-
guage routine.

int_bcd()

convert.c

Converts an integer in the range 0 through
99 to BCD format.

issububcmd()

bubble.c

Issues commands to the bubble memoryv
controller and analyvzes the status codes
which result. In many cases, it will attempt
to issue a comumand repeatedly if there is
some failure, doing this up to a specified
number of times. This routine is written in
C and is not fast enough to handle the read
and write commands. Use bubread() and
bubwrite() for these.

itoa()

convert.c

Converts an integer to an ASCII string rep-
resentation. This subroutine is from Bilofsky
[Ref. 18].

listen()

expmnt.c

Listens for the Auxiliary Power Units
(APUs) to be activated. It also monitors the
Vibration-activated Launch Detector and
the Barometric Pressure Switches to see if a
launch has occurred without detection of the
activation of the APUs.

logevent()

expmnt.c

Makes entries into the event log stored in the
bubble memory.

log_menu()

expmnt.c

Displavs a menu to provide for conveniently
changing the contents of bubble memory.
This is essential for properly initiating the
experiment.

look_ahead()

inout.c

This program can see whether a character
has been input from the keyboard without
disturbing the input buffer.

main()

main.c

First C language subroutine to get control
after start-up. Decides whether to invoke
the menu-driven diagnostic routines or to
run the Vibro-acoustic Experiment.

95

mbrk()

mbrk.s

Implements the C language standard library
function mbrk(). This function was provided
with the Uniware C Compiler.

memory_dump()

main.c

Asks the user for an address in memory and
the number of bytes he wants to see dis-
played. It then provides a hexadecimal and
ASCII display of the contents of the selected
area of memoryv on the terminal.

menu()

main.c

Displays the first in a hierarchy of menus
permitting the user to test subsystems of the
Vibro-acoustic Experiment individually.

monitor_heaters()

expmnt.c

Operates the heaters if the temperature of
the bubble memory is too cold. If the tem-
perature is too hot, it shuts the heaters off.
Otherwise it leaves the heaters alone.

output()

newio.s

Outputs a byte to a port. Written in assem-
bly language, but used like a C language
routine.

portdump()

inout.c

Outputs a string to the terminal.

post_launch()

expmnt.c

Conducts routine monitoring of events upon
the completion of the Vibro-acoustic Exper-
iment. These functions continue until the
Space Shuttle returns to earth. or until the
10V bus no longer carries suflicient voltage
for safe operation of the bubble memories.
In the latter case, the experiment stops all
operations.

power_status()

power.c

Inputs the one-byte status code from the
power relay subsvstem.

power_write()

power.c

Sends a one-byvte command code to the
power relay subsystem,

pwrent()

power.c

A menu program which let’s the user read
the status code from the power relay subsys-
tem or send commands to it.

rdstatreg()

bubble.c

Reads the status register of the bubble
memory controller.

record()

expmnt.c

Performs the record phase of the abridged
experiment.

rte()

clock.c

A menu routine allowing the user to set or
read the clock, and to test the time-out fea-
ture (see testtimeout() in this table).

short_experiment()

expmnt.c

Performs the abridged Vibro-acoustic Ex-
periment.

96

showbubbuff()

bubble.c

A buffer exists in the controller's memory to !
hold a copy of data transferred to or from
the bubble memory. This routine displays
the contents of that buffer either in ASCII
characters or hexadecimal.

show_event()

expmnt.c

Converts an event code intc an intelligible
message which it then displays on the termi-
nal.

show_waketime()

clock.c

Displays the date and time when a time-out
will end.

shut_down()

expmnt.c

Removes power from any subsystems which
presently have power. It makes a log entry
for each such case.

shut_down_no_log()

expmnt.c

Removes power from any subsystems which
presently have power. It makes no log entry
of its actions.

ssdrmode()

expmnt.c

Issues commands to the Solid State Data
Recorder (SSDR) to enter various modes of
operation.

ssdr_status()

expmnt.c

Obtains the status code from the Solid State
Data Recorder (SSDR).

termin()

inout.c

Inputs a single character from the terminal.

testinput()

inout.c

Asks the user for a hexadecimal port address,
reads that port and displays the data read
from that port.

testio()

main.c

This routine permits the user to perform in-
put from and output to anyv port in the sys-
tem. By “port” we mean here an address in
the input and output space.

testoutput()

inout.c

Asks the user for a hexadecimal port address
and a hexadecimal byte to be sent (o the
port, and sends it there.

testpattern()

bubble.c

A bufTer exists in the controller’s memory to
hold a copy of data transferred to or from
the bubble memoryv. This routine permits
the user to modify the contents of that
buffer.

testtimeout()

clock.c

Lets the user test the time-out feature. For
example, he can request a delay of 15 sec-
onds. During this delav, the control pro-
gram will not respond to input. At the end
of this period, it will display the current date
and time.

97

timeout()

clock.c

In one mode of operation, this function
computes a “wake-up” time based on the
current time and a specified delay. In an-
other mode, it checks to see if a “wake-up”
time computed earlier has arrived or not.

tolower()

convert.c

Converts upper case characters to lower
case. Non-alphabetic characters are not
changed. This subroutine is from Bilofsky
[Ref. 18].

uitoh()

convert.c

Converts an unsigned integer to the corre-
sponding hexadecimal ASCII string repre-
sentation. For example, 45 is converted to
th"

version()

version.c

Displays the current version number of the
control program on the terminal.

voltages_low()

expmnt.c

Checks the 10V bus. If the voltage has fallen
too low, this function returns the value
TRUE; otherwise it returns the value
FALSE.

we_launched()

expmnt.c

Checks for auy indications of a launch.
These can come from the Vibration-activated
Launch Detector or from the Barometric
Pressure Switches.

98

APPENDIX F. SUBROUTINES, IN ALPHABETICAL ORDER WITHIN
EACH MODULE

Table 9. MS/DOS FILE INDEX: This table shows the names of the files in the
MS.DOS files. Subroutines are listed alphabetically by name within each
file group.

SOURCE
FILE

SUBROUTINE PURPOSE

Loads the five parametric registers in the
bubble memory controller. Most of these
never change. Two, however, do change of-
ten. These two specifv the page of bubble
bubble.c bpageset() memory where transfers of data begin. Call
this function prior to anv operation per-
forming input from or output to the bubble
rmemory to ensure the parameters are cor-
rectly specified.

Displavs a menu of low-level bubble memory
controller commands. These are useful in
testing the bubble memory for proper oper-
ation.

bubble.c bubecmdmenu()

Initializes the bubble memory prior to its
bubble.c bubinit() being used. This initialization must always

) be done after power 1s applied and before
input and output operations begin.

bubble.c bubio() gleertﬁ?r?lsoirxz'pm from and output to the bub-

Provides a menu of functions permitting the
user to perform operations with the bubble
memory. These operations include:

1. applying and removing power,
bubble.c bubmenu() 2. initialization,
3. input,

4. output and
3. reading

the status of the bubble memorv.

bubble.c bub _off() Removes power from the bubble memory.

bubble.c bub_on() Applies power to the bubble memory.

99

bubble.c

issububcmd()

Issues commands to the bubble memory
controller and analyzes the status codes
which result. In many cases, it will attempt
to issue a command repeatedly if there is
some failure, doing this up to a specified
number of times. This routine is written in
C and is not fast enough to handle the read
and write commands. Use bubread() and
bubwrite() for these.

bubble.c

rdstatreg()

Reads the status register of the bubble
memory controller.

bubble.c

showbubbuff()

A buffer exists in the controller's memory to
hold a copy of data transferred to or from
the bubble memory. This routine displays
the contents of that buffer either in ASCII
characters or hexadecimal.

bubble.c

testpattern()

A bufler exists in the controller’s memory to
hold a copy of data transferred to or from
the bubble memory. This routine permits
the user to modifv the contents of that
buffer.

bubrw.s

bubread()

Takes care of the actual transfer of data from
the bubble memory to the controller memory
during a read. This routine was written in
assembly language in order to achieve a data
transfer rate of 16 K byvtes per second im-
posed by the bubble memory hardware.

bubrw.s

bubwrite()

Takes care of the actual transfer of data to
the bubble memory from the controller
memory during a write. This routine was
written in assembly language in order to
achieve a data transfer rate of 16 K bytes per
second imposed by the bubble memory
hardware.

bubrw.s

bubxfer()

Part of the sequence of steps necessary to
initialize the bubble memory entails trans-
ferring the byte OxfT to the bubble memory
40 times. This routine does this. The rou-
tine is written in assembly language for
speed, but is called in the same manner as a
C routine.

clock.c

clockcompare()

Compares two clock times to see which one
is later than the other.

clock.c

clockint()

Dates and times in the real time clock are
stored in BCD format. This routine converts
them to integer format to make it convenient
to perform arithmetic with them. Thus, fu-
ture dates and times can be computed.

100

clock.c

clockread()

Reads the current date and time {rom the
real time clock.

clock.c

clockset()

Sets the current date and time in the real
time clock according to values specified by
the user.

clock.c

clocksum()

Adds two dates and times together to
produce a new date and time. In practice,
one uses this to calculate a future date and
time from the current date and time and
some desired delay (e.g., 15 minutes).

clock.c

dump_clock()

Display the date and time on the terminal.

clock.c

dump_iclock()

Display the date and time on the terminal.
This differs from dump_clock() in that the
dates and times it uses are integers, not Bi-
nary Coded Decimal (BCD) numbers.

clock.c

get___time()

Obtain a valid date and time from the user.

clock.c

rte()

A menu routine allowing the user to set or
read the clock, and to test the time-out fea-
ture (see testtimeout() in this table).

clock.c

show_waketime()

Displavs the date and time when a time-out
will end.

clock.c

testtimeout()

[ets the user test the time-out feature. For
example. he can request a delay of 15 sec-
onds. During this delay. the control pro-
gram will not respond to input. At the end
of this period, it will display the current date
and time.

clock.c

timeout()

In one mode of operation, this function
computes a “wake-up” time based on the
current time and a specified delay. In an-
other mode, it checks to see if a “wake-up™
time computed earlier has arrived or not.

convert.c

atoh()

Converts an ASCII string representation of
a hexadecimal byte into the corresponding
hexadecimal byte. For example, the string
“a3” is converted to the byte value Oxa3l.

convert.c

atohexint()

Converts a four-byte ASCII string repres-
enting a two-byte hexadecimal word into the
corresponding hexadecimal word. For ex-
ample, the string “a34b” is converted to the
word 0xa34b.

convert.c

atoi()

Converts a string representing a decimal in-
teger into the corresponding integer. This
subroutine is from Bilofsky [Ref. 18].

101

convert.c

bed_asc()

Converts a BCD byte to the corresponding
character string representation. For exam-
ple, 0x17 is converted to “17".

convert.c

bed_int()

Converts a one-byte BCD number to integer
format.

convert.c

ctoh()

Converts a single character to its
hexadecimal ASCII string representation.
For example, Oxa3 is converted to “a3”.

convert.c

int_bed()

Converts an integer in the range 0 through
99 to BCD format.

convert.c

itoa()

Converts an integer to an ASCII string rep-
resentation. This subroutine is from Bilofsky
(Ref. 18].

convert.c

tolower()

Converts upper case characters to lower
case. Non-alphabetic characters are not
changed. This subroutine is from Bilofsky
[Ref. 18].

convert.c

uitoh()

Converts an unsigned integer to the corre-
sponding hexadecimal ASCII string repre-
sentation. For example, 43 is converted to

uzDu

delay.s

delay()

Provides a software-driven time delav in in-
crements of 10 ms. Written in assemblyv
language. but used like a C language routine.
Adapted from a program by Mr. David
Rigmaiden of the Naval Postgraduate
School.

expmnt.c

ad_read()

Gets a character of data from the Analog-
to-digital (A D) Converter.

expmnt.c

adtoint()

Converts a character of raw data from the
Analog-to-digital (A D) Converter into an
integer format with the more meaningful
units of volts or degrees kelvin.

expmnt.c

alter_page0()

Permits the user to alter the contents of page
0 of the bubble memory. This is required in
initializing the experiment.

expmnt.c

bad_idea_to_record()

This routine is used in the abridged exper-
iment to prevent record mode from being re-
started after a power fault. Without this
safeguard, perfectly good data recorded dur-
ing launch might be erased.

expmnt.c

baro_switch()

Checks to see if the barometric switches have
been activated yet. If so, launch must have
occurred and an appropriate log entry is
made.

102

expmnt.c

checkprt()

Checks to see whether or not there is a ter-
nunal connected to the RS-232C serial inter-
face port.

expmnt.c

colder_than()

Returns the value TRUE if the bubble
memory’s temperature is below the temper-

ature given in the argument to the function,
FALSE otherwise.

expmnt.c

display_data_page()

Displays the contents of any page in the
bubble memory in a readable format. It will
not successfully displayv page 0. Use
display_page0() for this purpose.

expmnt.c

display_page0()

Displays the contents of page 0 in a readable
format.

expmnt.c

do_sweep()

Causes the siweep phase of the experiment to
be performed.

expmnt.c

expmnt()

Causes the Vibro-acoustic Experiment to be
performed.

expmnt.c

listen()

Listens for the Auxiliarv Power Units
(APUs) to be activated. It also monitors the
Vibration-activated Launch Detector and
the Barometric Pressure Switches to see if a
launch has occurred without detection of the
activation of the APUs.

expmnt.c

logevent()

Makes entries into the event log stored in the
bubble memorr.

expmnt.c

log_menu()

Displays a menu to provide for conveniently
changing the contents of bubble memory.
This 1s essential for properly initiating the
experiment.

expmnt.c

monitor_heaters()

Operates the heaters if the temperature of
the bubble memory is too cold. If the tem-
perature is too hot, it shuts the heaters off.
Otherwise it leaves the heaters alone.

expmnt.c

post_launch()

Conducts routine mionitoring of events upon
the completion of the Vibro-acoustic Exper-
iment. These functions continue until the
Space Shuttle returns to earth, or until the
10V bus no longer carries sufficient voltage
for safe operation of the bubble memories.
In the latter case, the experiment stops all
operations.

expmnt.c

record()

Performs the record phase of the abridged
experiment.

expmnt.c

short_experiment()

Performs the abridged Vibro-acoustic Ex-
periment.

103

expmnt.c

show_event()

Converts an event code into an intelligible
message which it then displays on the termi-
nal.

expmnt.c

shut_down()

Removes power {rom any subsystems which
presently have power. It makes a log entry
for each such case.

expmnt.c

shut_down_no_log()

Removes power from any subsystems which
presently have power. It makes no log entry
of its actions.

expmnt.c

ssdrmode()

Issues commands to the Solid State Data
Recorder (SSDR) to enter various modes of
operation.

expmnt.c

ssdr_status()

Obtains the status code from the Solid State
Data Recorder (SSDR).

expmnt.c

voltages_low()

Checks the 10V bus. If the voltage has fallen
too low, this function returns the value
TRUE. otherwise it returns the value
FALSE.

expmnt.c

we_launched()

Checks for any indications of a launch.
These can come from the Vibration-activated
Launch Detector or from the Barometric
Pressure Switches.

fputc.c

fputc()

The UNIWARE compiler provides the
standard C output routine printf() to provide
output to the standard output device. How-
ever, this routine requires the user to provide
a routine fpute() to handle the output of a
single character to any arbitrary device. We
only support output by fpute() to the
RS-232C terminal, so this routine is specific
to that device. The routine will nor output
a character if, upon checking, it finds there
is no terminal attached to the serial interface
port. Thus, when the experiment is operat-
ing, calls to printf() are of no effect unless
there is a terminal connected.

initial.c

inithardware()

Initializes the six ports on NSC810A #1 and
#2.

inout.c

allow_ctrl_interrupts()

Processes the special characters CTRL S and
CTRL Y when read from the keyboard.
CTRL S is a toggle switch. The first time it
is pressed, the display halts. The second time
it 1s pressed, the display resumes. Subse-
quently its function alternates between these
two. CTRL Y invokes the diagnostic sub-
system.

104

.

inout.c

dump()

Produces a hexadecimal and ASCII dump
of any desired region of memory.

inout.c

echo()

Sends a single character to the terminal.

inout.c

gethex()

Inputs a string representation of a two-digit
hexadecimal number from the terminal and
converts it to hexadecimal format. For ex-
ample, “3a” is converted to 0x3a.

inout.c

gethexint()

Gets a four-digit hexadecimal number in
string format from the terminal and converts
it to a hexadecimal word. For example,
“3ab2” is converted to 0x3ab2.

inout.c

getint()

Inputs a string representation of a decimal
integer from the terminal and converts it to
integer format. For example, “352" is con-
verted to 352. '

inout.c

getpageno()

Asks the user for a page number in bubble
memory.

inout.c

look_ahead()

This program can see whether a character
has been input from the kevboard without
disturbing the input buffer.

inout.c

portdump()

Outputs a string to the terminal. interface
port.

inout.c

termin()

Inputs a single character from the termunal.

inout.c

testinput()

Asks the user for a hexadecimal port address,
reads that port and displays the data read
from that port.

inout.c

testoutput()

Asks the user for a hexadecimal port address
and a hexadecimal byte to be sent to the
port. and sends it there.

main.c

main()

First C language subroutine to get control
after start-up. Decides whether to invoke
the menu-driven diagnostic routines or to
run The Vibro-acoustic Experiment.

mbrk.s

mbrk()

Implements the C language standard library
function mbrk(). This function was provided
with the Uniware C Compiler.

main.c

memory_dump()

Asks the user for an address in memory and
the number of bytes he wants to see dis-
played. It then provides a hexadecimal and
ASCII display of the contents of the selected
area of memory on the terminal.

main.c

menu()

Displays the first in a hierarchy of menus
permitting the user to test subsystems of the
Vibro-acoustic Experiment individually.

105

main.c

testio()

This routine permits the user to perform in-
put from and output to any port in the svs-
tem. By “port” we mean here an address in
the input and output space.

newio.s

input()

Inputs a character from a port. Written in
assembly language, but used like a C lan-
guage routine.

newio.s

output()

Outputs a byte to a port. Written in assem-
bly language, but used like a C language
routine.

power.c

power_status()

Inputs the one-byte status code from the
power relay subsystem.

power.c

power_write()

Sends a one-byte command code to the
power relay subsystem.

power.c

pwrent()

A menu program which let's the user read
the status code from the power relay subsys-
tem or send commands to it.

version.c

version()

Displays the current version number of the
control program on the terminal.

106

APPENDIX G. CONTROL PROGRAM DOCUMENTATION

We presented a general description of the software as a whole in Chapter
IV. DESIGN OF THE CONTROL SOFTWARE on page 43. This included a mod-
erately detailed description of the flowcharts which describe the system, beginning with
Flowchart 0 in Figure 20 on page 48. This appendix contains more detailed de-
scriptions of the operation of each subroutine in the control program. A basic know-
ledge of the C programming language is assumed.

We have grouped the functions into two broad categories:

1. major subroutines, and

2. support subroutines.

The descriptions in this appendix are best understood by referring to the source code in
APPENDIX H. CONTROL PROGRAM SOURCE CODE on page 150.

In Section A. Major Subroutines and Functions on page 108 we present the major
subroutines and functions of the control program in an order based roughly on their
position in the hierarchy of function calls. This section therefore follows the overall
structure of the control program.

Referring again to Flowchart 0 in Figure 20 on page 48, we see that the control
program contains two major parts:

1. One performs the Vibro-acoustic Experiment.

2. The other operates a menu-driven system to permit testing of the svstem on the
ground.

Once we have discussed the major subroutines, there will remain numerous lesser
subroutines which we describe in Section B. Supporting Subroutines and Functions on
page 121. We provide two tables to make it easier quickly to ascertain the purpose of
subroutines and their locations in several different source files. Table 8 on page 91 lists
all subroutines by name, and shows in which MS, DOS source files subroutines are lo-
cated. Table 9 on page 99 lists the contents of each MS,;DOS source file in alphabetic
order by name.

In general, the program attempts to display many diagnostic messages on the ter-
minal using the printf() function. This function was supplied with the C compiler, but
it in turn calls a function called fputc() not supplied with the compiler. The purpose of

107

the subroutine fputc() is to accept a character from the printf() function and to send it
to the terminal for display. We created this subroutine, and its description is contained
in Section B. Supporting Subroutines and Functions on page 121. This function al-
ways checks to see whether there is a terminal attached or not. If not, it makes no at-
tempt to display any messages on the terminal. Henceforth, whenever we say that
something will appear on the terminal, it will be understood that this will only occur if
the terminal is attached.

A. MAJOR SUBROUTINES AND FUNCTIONS
1. main()

This is the beginning point for any C language program. It is called by the
start-up code, which is written in Z-80 assembly language. The main() program first
initializes pointers to the buffers which will hold data from the bubble memory. There
are two formats for such data. One is used in page zero of the memory, which is used
to record the current status of the experiment. The other format is used in all other
pages of the bubble memory to record all actions and measurements taken during the
experiment. The buffers are treated both as arravs and as structures. When thev are
treated as arravs, it is easy to transfer the data to or from the bubble memory. When
thev are treated as structures, it is easy to extract individual fields of data. By forcing
the pointers pagezero and log_page to point to the arravs page0_buffer and log_buffer
respectively, we can access the data subsequently by using either the pointer to the
structure or the name of the array as appropriate.

The main() program then calls inithardware() to initialize the two NSC810A
RAM-1.O Timer chips on the controller board. Next it checks to see if there is a ter-
minal attached by calling checkprt(). The absence of a terminal implies that the appa-
ratus is now installed in the Space Shuttle and the controller should therefore perform
the experiment. Therefore, if there is no terminal attached, main() will call expmnt(),
which performs the Vibro-acoustic Experiment.

If there is indeed a terminal attached, main() calls shut_down_no_log(), whose
function is to remove power from all subsystems without logging that action in the
bubble memory. The reason for remc: ing power is to ensure that all the subsystems are
in a known state at the outset. The reason for not wishing to log this action is that the
log entries should only be made during the course of the experiment. Since the con-
troller is about to enter the menu subsystem, it is not going to perform the experiment
and so no log entry is appropriate.

108

Next main() calls menu(), from which all other testable sections of the control
program can be selected. The option EXPERIMENTOK permits the menu diagnostic
subsystem to invoke the program expmnt() later, if the user wishes to do so. This would
permit him to perform the experiment on the ground and so test its operation.

2. void inithardware(void)

This subroutine initializes the two NSC810A RAM-1/0O-Timer chips on the
controller board. The uses of the pins of port A in each chip are given in Table 4 on
page 17 and Table 5 on page 17; those of Port B are given in Table 2 on page 15 and
Table 3 on page 16; and those of port C are given in Table 6 on page 18 and Table 7
on page 19.

MDRI is the Mode Definition Register of the NSC810A #1. Writing a 0x00 to
it puts port A, into basic I O mode, which is the simplest method of I O supported by
this chip.22

DDRAI is the Data Direction Register of port A, of the NSCS810A £1. Writing
OxfT to it causes each of its bits to be configured for output.

DDRBI is the Data Direction Register of port B, of the NSCS810A =1. Writing
Oxff to it causes each of its bits to be configured for output.

DDRCI is the Data Direction Register of port C, of the NSCS10A 1. Writing
0x30 to it causes bits 0 through 3 and bits 6 and 7 to be configured for input. Bits 4 and
5 are configured for output, although bit 5 is not used in the Vibro-acoustic Experiment.
Note: this 1s only a 6 bit port; bits 6 and 7 do not exist.

TMOL1 is the register for setting the mode of Timer 0 in NSCS10A #1. Writing
0x00 to it will stop the timer, an action which must be performed before changing its
mode. Writing Ox25 will cause the timer to produce a square wave without
“prescaling” and with “single precision”. When prescaling is not used, everv pair of in-
put clock cvcles is used to advance the timer's counter by one. When single precision
is selected, only the low byte of the timer will ever be read.

TOLBI and TOHBI are the registers for the low byte and high byte respectively
of the modulus for Timer 0 in NSC810 #1. This number serves to initiate the timer
counter. During subsequent operation, the counter is decremented once every clock
period. Each time the counter reaches 0, the timer output switches to the opposite state
and the timer is reloaded. We write 0x07 to the low byte and 0x00 to the high byte, so
the modulus is 7. This means that after every seven cycles, the clock is reloaded. The

22 With basic 1. O, there is no handshaking (see Glossary) with support hardware.

109

reloading consumes a further cycle, and it takes two complete reloads to go through one
cycle of the output. The period thus is 2 x (7 + 1) = 16 clock periods. The NSCS00 is
driven by a 4.9152 =+ 2 =2.4576 MHz clock. So 16 clock periods take 6.51 s, for a
clock frequency of 3 5} o 153.6 kHz. This signal is used as a baud-rate generator
on the controller board; it is fed to an Intersil 6402 UART which further divides the
frequency by 16, yielding a 9600 baud transmission rate at which to drive the RS-232C
interface.

STARTOL is the start port of Timer 0 in NSC810 #1. Writing anything to this
port causes the newly programmed timer to start operating.

MDR2 is the Mode Definition Register of the NSC810A #2. Writing a 0x00 to
it puts port A, into basic I'O mode. This is the simplest method of I Q supported by
this chip.23

DDRAZ2 is the Data Direction Register of port A, of the NSC810A =2. Writing
0x00 to it causes each of its bits to be configured for input.

DDRB2 is the Data Direction Register of port B, of the NSC810A %2. Writing
0x00 to it causes each of its bits to be configured for input.

DDRC2 is the Data Direction Register of port C, of the NSC810A #2. Writing
0x31 to it causes bits 1 through 3 to be configured for input. Bits 0. 4 and 5 are con-

figured for output. Bits 1 and 2 are not in use. Note: this is only a 6 bit port; bits 6
and 7 do not exist.

TMO2 is the register for setting the mode of Timer 0 in NSC810A =2. Before
vou can change the mode, you must first stop the timer. Writing 0x00 to it does this.
Writing 0x25 will cause the timer to produce a square wave without “prescaling” and
with “single precision™. When prescaling is not used, every pair of input clock cycles is
used to advance the timer’s counter by one. When single precision is selected, only the
low byte of the timer will ever be read.

TOLB2 and TOHB2 are the registers for the low byte and high byte respectively
of the modulus of Timer 0 in NSC810 #2. This number serves to initiate the timer
counter. Once every clock period, the counter is decremented. Each time the counter
reaches 0, the timer output switches to the opposite state and the timer is reloaded.
We write 0x01 to the low byte and 0x00 to the high byte, so the modulus is 1. This
means that after 1 cycle, the clock is reloaded. Now the reloading consumes a further
cycle, and it takes two complete reloads to go through one cvcle of the output. The

23 With basic 1,0, there is no handshaking (see Glossary) with support hardware.

110

period thus is 2x(l1+1)=4 clock periods. The NSCB800 is driven by a
4.9152 = 2 = 2.4576 MHz clock. So 4 clock periods take 1.628 us, for a clock frequency
ofm%-;s— = 614.4 kHz. This frequency is used as a clock for the National Semicon-
ductor ADCO816 Analog-to-digital (A, D) Converter.

When driven by a clock of frequency 640 kHz, the A'Ds normally can complete
the conversion of an analog signal to a digital value in around 100 us. The frequency
we are using here, 614.4 kHz, is close to this, so we should get comparable performance.
[Ref. 19: pp. 8-71 to 8-81]

STARTO2 is the start port for Timer 0 in NSC810 #2. Writing anything to this
port causes the newly programmed timer to start operating.

Finallv., we clear bits 4 and 5 of port C, by writing 0x03 to the port C,
“bit clear” register, BCLRC2. The purpose of this is to ensure that power to the bubble
memory remains off, and to ensure that the bubble memory’s reset line is held low.
Strictly speaking, this should not be necessary, since the registers of the NSC810 are in-
itialized to be zeros. However, we take nothing for granted. and this precaution helps
preclude the loss of the bubble memory's contents that might result from an improper
application of power.

3. char checkprt(void)

This function inspects the TERMON bit (bit 3) of Port C in NSC810 £2. This
bit is a Y if there is an RS-232C terminal connected to the controller. It is a 1 otherwise.
The function returns a TRUE in the first case; a FALSE in the second.

4. void shut_down_no_log(void)

This subroutine removes power from any subsystems which are currently on.
It does not record the fact in the bubble memory log, which is the only respect in which
it differs from the subroutine shut_down(). It obtains a character describing the position
of each of the relays in the power subsystem by calling the function power_status(). The
series of if statements which then follows causes successive bits of that character to be
tested. Every time one of these bits indicates that a relay is in the ‘on’ position, that
relay is turned off with a call to power_write().

S. char menu(char experiment_flag)

This function is at the top of a hierarchy of diagnostic subroutines. The func-
tion calls the sub-function version() whose only purpose is to display the number and
date of the current version of the control program. It next presents a menu from which
the user can select any of a number of categories of diagnostic tests. The function
termin() is used to obtain a single character from the keyboard, that character is con-

11

verted to lower case by tolower() (if it was not already in lower case), and the character
is displaved on the terminal. That character is used by the switch to select a case state-
ment appropriate to the user’s choice. The entire process will be executed repetitively.
The only way to leave it is by choosing to run the experiment. If this is done, the
function expmnt() gets control.

To cause a software reset, the program executes an assembler instruction jp 0.
This function has the effect of restarting the controller at address 0 of memory. This is
the same address at which execution begins when power is first applied. All variables
are set to their initial values, other start-up functions are performed as usual, and the
program main() begins to execute anew.

The function rtc() accesses the real-time clock diagnostic subroutines.

The function pwrent() access the power subsvstem diagnostic subroutines.

The function bubmenu() accesses the diagnostic subroutines which can be used
to test the bubble memory module. The tests available through this selection all are very
low-level tests.

When choice E is made, the controller enters a for [oop and successively reads
each of the analog-to-digital (A D) converter channels by calling the sub-function
adread(). This function returns an eight-bit number addata which is proportional to the
value read by the A D converter. A call to printf() displayvs this number along with a
descriptive adcaption (defined in the file global.c). The first three readings are known to
be voltages. The remaining values are temperatures, so they are displayved in a slightly
different format. Furthermore, depending on which channel the A D converter read. the
number read may represent different magnitudes in the measured units. For example,
the number 102 may represent 4V or 270°K, depending on which channel was read.

Voltages, fall either into the range [0, 10]V or the range [0, 20]V. Temperatures
fall into the range [0, 500]°K. The function adtoint() converts the value read by the A'D
converter into its value in degrees Kelvin or in hundredths of volts, whichever is appli-
cable. The converted value is then displaved using the printf() function. To get two
converted readings per line, carriage returns are placed at the end of every other dis-
played value, only.

There are two possibilities if choice F is made. One is that experiment_flag is
TRUE; the other is that it is FALSE. The former case always occurs when menu() is
called the first time, from main(). However, it is possible to interrupt the execution of

the experiment and to enter the menu subsystem recursively. It is not possible to make

112

menu choice ¥ under these circumstances. To restart the experiment would require first
making choice A to reset the svstem.

The function testio() is called when choice G is made. Its purpose is to allow
low-level testing of the peripheral devices.

The function memory_dump() is called when choice H is made. Its purpose is
to display the contents of the controller’'s memory. This is useful only in debugging the
software.

The function log_menu() is called when choice I is made. Its purpose is to allow
the contents of the bubble memory to be displayed. It differs from the functions called
when choice D is made in that the contents of the bubble memory are regarded by
log_menu() as formatted data areas, not just as collections of characters. This means
that the data stored in the bubble memory during execution of the experiment can be
displaved in an intelligible format, and the experiment’s status, stored in page 0, also can
be displaved in a readable format. The function log_menu() also allows the status to be
modified in order to affect the manner in which the controller performs the experiment.
The details of how to do this are contained in Chapter V. HOW TO GET THE EX-
PERIMENT READY FOR A LAUNCH on page 63.

6. void version(void)

This function displays the number and date of the current version of the control

program on the terminal.
7. void rtc(void)

This function displays a menu of functions related to the operation of the real-
time clock. The clock can be read, set or tested from here. The method of displaving
the menu, reading the choice, and taking the appropriate action is identical to that used
in the function menu() described earlier. The function rte() differs only in the choices
and actions possible.

Choice A causes the function clockread() to be called. It stores the current date
and time in a structure whose pointer is clock. The function dump_clock() is called next,
it displays the date and time on the terminal. This choice is provided to verify that the
real time clock is working correctly.

Choice B causes the function clockset() to be called. It permits the user to set
the current date and time. The real time clock is powered by its own battery, so this

option should seldom be required.

113

Choice C causes the function testtimeout() to be called. Its purpose is to permit
the operation of the timeout feature to be tested. It is useful only in debugging the
software.

8. void clockread(struct datetime *your_clock)

This function inputs the binary-coded-decimal (BCD) time from the real-time
clock and places the results in a structure pointed to by vour_clock. If the current
number of seconds changes between the start and end of reading, it means that the clock
has advanced to a subsequent time. To preclude the reading of an incorrect time, the
input sequence is repeated in the hope that an advance will not occur again. This can
happen up to 10 x TRIES times.

For example, suppose the time were 9:59:59 when the seconds and minutes were
read. The clock might advance to 10:00:00 before the hours were read. Then the time
read would appear to be 10:59:59. which is wrong by one hour. By reading it again, we
may avoid this error, but there is no obvious wayv to guarantee it without stopping the
clock. Doing so would be disadvantageous, since it would affect timing relationships in
an unpredictable manner, so we chose not to stop the clock but to take our chances and
try reading it again.

9. void dump_clock(struct datetime *clock)

This function displavs on the terminal the time stored in a structure pointed to
by clock. To do this it calls the function bed_int(), which converts the BCD values in the
date and time provided by the real time clock into decimal equivalents. These converted
values are then displaved by the function printf().

10. void clockset(struct datetime *clock)

This function first calls the function get_time() to ask the user for the current
date and time. The time specified is left in the structure pointed to by clock. The func-
tion clockset() then stores the date and time in the real-time clock by repeated calls to
output().

11. void testtimeout(void)

This allows the user to test that the time-out function is working. The time-out
function enables the control program to continue normal processing while waiting for
some amount of time to elapse.

For example, after launch the controller will monitor the Solid State Date Re-
corder (SSDR) for completion of recording. However, it will also initialize a time-out
of three minutes, and will stop waiting for the SSDR if this time should elapse before the
SSDR signals completion. The testtimeout() function allows the user to test the time-out

114

feature for any number of seconds, minutes or hours. A menu is presented to the user
using the same method already outlined in the description of the function menu(). The
units of the specified delay depends on the menu choice made. The function getint() is
called to obtain the number of units of delay that the user wants. The current time then
is obtained with a call to clockread(), and it is displayed on the terminal with a call to
dump_clock(). The timeout() function then is called to initialize the delay according to
the number of delay units specified by the user. A while loop calls timeout() repeatedly
with the NULL parameter. This parameter causes the timeout() function to check to see
if the desired wake-up time has arrived or not. As long as it has not vet arrived, that
function returns FALSE and the program continues to loop. If other statements were
provided before the end of the loop, then they would be performed repeatedly until the
function timeout() finally returned TRUE, signifving that the desired amount of time had
elapsed. The function testtimeout() has no such instructions, but when ..e delay period
is over, it rings the bell and once again reads and displayvs the current time.
12. void pwrent(void)

This function displays a menu to allow the user to test the operation of the
power board relavs. Any of the attached units, such as the SSDR, can be switched on
or off from this menu. The method of displaying the menu is the same as that already
given in the description of the function menu(). Any menu choice from A through J is
converted to a number in the range [0,9] by subtracting the character *a’ from 1t. This
number is then used as an index into array relay to select the command to be issued to
the power control subsystem through a call to the function power_write(). Choice K
causes the power subsystem's status to be read with a call tc power_status() and then
displaved on the terminal. The meaning of this byte is shown in Table 2 on page 3.

13. void bubmenu(void)

This function displays a menu which lets the user test the bubble memory on the
controller circuit board. The method of displaying the menu is the same as that already
given in the description of the function menu().

Choice A causes a call to bub_on().

Choice B causes a call to bub_off().

Choice C attemps to initialize the bubble memory with a call to bubinit(). The
results of this attempt are then explained with a call to printf().

Choice D causes a call to bubcmdmenuy().

115

Choice E causes a call to testpattern(). The character string tempbuffer is pro-
vided to this function for storage of a string of characters entered by the user from the
kevboard.

Choice F causes the contents of tempbuffer to be displayed in ASCII format.

Choice G causes the contents of tempbuffer to be displayed in hexadecimal for-
mat. This would be useful if the buffer had been loaded from the bubble memory and
if it contained unprintable characters. Such would be the case if the contents of the
bubble memory had been generated by performing the experiment, since the experiment
formats the data in characters which may not all be capable of being displayved.

Choice H calls getpageno() to ask the user which page of the bubble memo~
he wishes to access. It then calls bubio() to transfer the contents of the bufTer into that
page of the bubble memory.

Choice [calls getpageno() to ask the user which page of the bubble memory he
wishes to access. It then calls bubio() to transfer the contents of that page of the bubble
memory into the buffer.

Choice J causes a call to rdstatreg(), which reads and displays the contents of
the bubble memory controller’s status register. The format of this register is discussed
in detail in [Ref. 1}.

14. char bub_on(void)

This function applies power to the bubble memory on the controller circuit
board.

15. void bub_off(void)

This function removes power from the bubble memory on the controller circuit
board.

16. char bubinit(void)

This subroutine initiates the bubble memory on the controller circuit board.
Power must have been applied first. The sequence of commands is described in
[Ref. 1: pp. 38-39b). It is as follows:

1. Issue the BABORT (abort) command to the bubble memory.

2. Set up the parametric registers, pointing to page 0 of the bubble memory.
3. Issue the BINIT (bubble initialize) command.
4

. Issue the BFIFORESET (bubble FIFO reset) command to reset the first-in, first-
out (FIFO) buffer in the controller’'s bubble memory.

5. Transfer 40 OxfT characters to the FIFO buffer in the bubble memory.

116

6. Issue the BWRBLREG (bubble write boot loop register) command. At this point,
the bubble memory is ready for reading and writing.
17. void bubcmdmenu(void)
This subroutine allows the user to issue any of the following commands to the

bubble memory, one at a time:
1. Abort
2. Load parametric registers
Initialize
Reset the FIFO buffer
Perform the transfer of 40 OxfY characters to the FIFO

AR AR

Write the boot loop register

These commands are issued by bubinit(), but are provided separately here to permit de-
tailed testing of the initialization process.
18. void testpattern(char buffer|])

This subroutine permits the user to fill a buffer in RAM with characters to be
written to the bubble memory. Up to PAGELENGTH characters can be written at a
time. Its purpose is to enable the user to verify that data can be written to the bubble
memory and read back successfully later.

This subroutine begins by placing a 0 in the variable ¢. It asks the user to enter
a string of characters from the keyboard, and then enters a loop. [t will continue reading
up to PAGELENGTH characters. If it encounters a carriage return, it will place blanks
in the remainder of the buffer.

19. void showbubbuff(char buffer][}, char mode)

This subroutine will display the contents of buffer either in ASCII format or in
hexadecimal representation, according to the value of mode. This parameter can be ei-
ther ASCII or HEX. The ASCII format would be suitable if it were known that the
bubble memory page buffer contained only printable characters, as it would if it had
been filled by testpattern(). The hexadecimal format would be suitable if it were known
that the bubble memory page previously read contained unprintable characters, or if the
contents were unknown.24

24 It may be unwise to risk sending potentially unprintable characters to the terminal, since
some of them have surprising results, such as clearing the screen.

117

20. char bubio(char command, int page, char *buffer)

This subroutine permits reading from or writing to any page of the bubble
memory. Pages can fall in the range 0 through 8191. Commands can be either one of
BREAD or BWRITE. The data is placed into or read from the buffer pointed to by
buffer.

To operate the bubble memory when the temperature falls below 10°C may
cause its contents to be destroyed. A call to the function colder_than() precludes this
from happening. If that function returns TRUE, then it must be too cold. The function
bubio returns a FALSE to indicate that it was unsuccessful in accessing the bubble
memory.

To minimize power consumption, the subroutine applies power to the bubble
memory before the operation begins and removes it again at the end of the transfer. It
calls bpageset() to set the parametric registers so as to allow the correct page of bubble
memory to be transferred. It then calls bubread() or bubwrite() as appropriate. After the
transfer is completed, the subroutine reads the bubble status register to see if the oper-
ation was successful or not. The bubio() subroutine returns a TRUE if the transfer
worked; FALSE otherwise.

21. void rdstatreg(void)

This subroutine lets the user check the contents of the bubble memory status
register. The meaning of its contents is shown in Table 10 on page 119. To obtain the
status code, this subroutine calls the function input(), which reads the contents of the
port BUBCTRL (port 0x41). This port vields the status code, which is then converted
to hexadecimal format using the function ctoh() and is displayed.

22, void expmnt(void)

This function performs the experiment. Its first task is to call initialize(). This
subroutine retrieves the current mission status from page 0 of the bubble memory. If
there is no more room in the bubble memory, a value of FALSE will be returned. Al-
though the experiment will be performed, no entries can be made in the log. The Solid
State Data Recorder (SSDR) may therefore still be able to record acoustic data suc-
cessfully. There will be no log of the events as they occur, however.

The function expmnt() next checks to see whether the flag full_experiment in
page 0 is TRUE or FALSE. If not, the function short_experiment() is called to perform
the abridged experiment. Otherwise, the unabridged experiment is to be performed by
expmnt().

118

- Table 10. BIT ASSIGNMENTS FOR THE BUBBLE MEMORY CONTROLLER
(BMC) STATUS BYTE: From [Ref. I : Chapter 3, p. 12].
Bit Value Meaning
1 FIFO Ready. The FIFO buffer is ready
0 to transfer data.
0 The FIFO buffer is not ready.
I | Parity error.
0 No parity error.
5 1 Uncorrectable error.
0 No uncorrectable error.
A 1 Timing error.
J
0 No timing error.
4 1 OP FAIL. The current operation failed.
0 No OP FAIL.
1 OP COMPLETE. The current operation
A 1s complete.
v No OP COMPLETE.
. Busv. This means that a command has
i been accepted but is not vet complete.
6 The BMC stayvs busy throughout a data
. transfer.
0 Not busy.

The next step is to initiate the sweep phase, if this has not already been done.
Recall that this might have occurred if power had been removed from the controller at
an earlier time, whether by human intervention or through a fault. If the sweep phase
is required, the function do_sweep() is called to do it.
Next the controller must decide whether or not a launch has already occurred.
It consults the launchdone flag in page O of the bubble memory. If this flag is TRUE,
the Space Shuttle launched earlier. Otherwise, we must listen for the activation of the
. Auxiliary Power Units (APUs) by calling the function listen(). When this function

completes its job, it will return a mission status. This can take on any one of the fol-

lowing values:

DAPUON The activation of the APUs has been detected.

DLAUNCH The activation of the APUs was never detected. but launch was
detected. This mayv be the case if the Vibration-activated
Launch Detector detects the vibration associated with the ig-
nition of the solid rocket motors or if the Barometric Pressure
Switches detect an ascent.

DUSERNOAPU The system is being tested on the ground and the user depressed
a key while the system was listening for the APUs. This pro-
vides a means of terminating the period of waiting for a signal.

If listen() detects anything, then the function expmnt() will turn on the Analog-
to-Digital (A’D) Converter by sending the code ADON to the function power_write().
It then will turn on the Solid State Data Recorder (SSDR) by sending the code
SSDRON to the same function. Both these actions will be logged in the bubble memory
by the function logevent(). If listen() had returned the mission status code DAPLUOY,
then expmnt() commands the SSDR to enter scroll mode. which means that it will start
recording ambient noise. Since the APUs are now on, we know that a launch must oc-
cur within seven minutes, or the mission will be scrubbed by NASA. We want to wait
at least this long. To be on the conservative side, we begin a ten minute tiume-out period,
during which we wait for some indication of a launch. The function we_launched() will
return the mussion status code DLAUNCH if 1t detects such an indication. 'L he function
look _ahead_discard() checks to see whether, during ground testing. the user has depressed
a Key during this time-out period. If so, we regard the time-out as having been com-
pleted. This permits accelerated testing of the svstem without alwayvs waiting for the end
of the full time-out period. Eventually one of the two conditions will have occurred and
the waiting period will end.

If the launch had occurred at some earlier time, we would end up in the next
section of the code in expmnt(). The fact that a launch had occurred previously would
be logged by calling logevent() with the argument PRIORLAUNCH, and the mission
status would be set to this same value.

The next section of code is executed only if a launch is in progress. The SSDR
is commanded to leave scroll mode and enter launch mode. The SSDR has only enough
memory to record two minutes of noise after a launch. We initiate a three-minute
time-out period so that if the SSDR fails to report completion, we will still be able to
go on to other tasks. During the period of this time-out, we want to ensure that a
launch is recorded in page O of the bubble memory, if in fact a launch has occurred. If
the launchdone flag in page O has not been made TRUE vet, expmtn() calls
baro_switch(). This funcion will check the condition of the barometric switches. If either

120

one has fired, it will make the launchdone flag TRUE. The barometric switches are re-
garded as the only thoroughly reliable indication of a launch.

We will terminate the launch phase either because the SSDR reports completion
or because the time-out has occurred. We record whichever of these is the case by call-
ing logevent() with either the argument DOPCOMP or DNOOPCOMP, respectively.

Unless expmnt() detected that the launch had been aborted, the experiment will
next invoke the function post_launch(). This function will keep contro! until power is
removed from the experimental apparatus.

B. SUPPORTING SUBROUTINES AND FUNCTIONS

The major modules of the control program were described in Section A. Major
Subroutines and Functions on page 108. Subroutines not described there are described
here. They are listed alphabetically by the name of the source file in which theyv are de-
fined. and alphabetically by function name within file name.

1. File bubble.c

a. void bpageset(int page)
This subroutine initializes the parametric registers in the bubble memorv.

There are five of these, and they contain information about the bubble memory's status
and about upcoming data transfers. The meaning of the fields within these registers is
given in Table 11 on page 122. A complete description of their use is given in [Ref. I:
pp. 7-12], from which the information in Table 11 on page 122 is taken.

121

Table 11. CONTENTS OF THE PARAMETRIC REGISTERS IN THE BUBBLE
MEMORY CONTROLLER: Extracted from [Ref. 1 : Chapter 3, pp.

7-12).
REGIS-
TER AD- REG IS IR FIELD CONTENTS
DRESS
Least significant eight bits of the
Least Significant block length. The block length
0x0b Byte of the Block 0-7 is the number of pages trans-
Length Register ferred to or from the bubble

memory at one time.

Most significant three bits of the
block length. Thus there are 11
0-2 bits in the block length, pernut-
ting up to 2! = 2048 pages to be
transferred at once.

3 Unused

The number of F'ormatter Sense
Amplifier channels available.
The binary value 0001 is appro-
priate here because we have only
one bubble memory attached.
4.7 Two channels are used to com-
municate with the bubble mem-
orv. With a single bubble
nmemory available, the page size
15 defined to be 64 bytes in
length.

Most Significant
0x0c Byvte of the Block
Length Register

122

0x0d

Enable Register

Interrupt enable (normal). We
set this to 0 because we are not
using interrupts to communicate
;vith the bubble memory control-
er.

Interrupt enable (error). We set
this to 0 because we are not using
interrupts to communicate with
the bubble memory controller.

Direct Memoryv Access (DMA)
Enable. We set this to 0 because
we are not using DMA with the
bubble memory.

Reserved by Intel.

Write Bootlooop Enable. The
bootloop is used internally to the
bubble memory. It need never
be rewritten except as part of a
diagnostic test. We let this be 0
since we don’t want to modify the
bootloop.

wn

Enable Read Corrected Data
(RCD). We set this to 1 to per-
mit the format sense amplifier to
apply error correction to errone-
ous data. If the error is uncor-
rectable, then the erroneous data
will be transferred to the host
processor.

Enable Internally Corrected Data
(ICD). Setting this causes the
bubble memory to notifv the host
processor of its inability to cor-
rect erroneous data. In this case,
it does not transfer that data.
We set this to 0 and don’t use the
feature.

Enable Parity Interrupt. We set
this bit to 0 because we are not
using interrupts.

0x0e

The Least Signif-
icant Byte of the
Address Register

0-7

The least significant byte of the
address. The address refers to the
particular page within the bubble
memory where data transfers are
to begin. Since we are using a
block length of one page, this
actually addresses the single page
we are transferring.

123

Most significant five bits of the

0-4 address. Thus there are
23 = 8192 pages in the bubble
Most Significant memor§..
0x0f Bvte of the Ad- Magnetic Bubble Memory
dress Register (MBM) Select. This field con-
5.7 trols which bubble memory is

addressed. Since we only are us-
ing one bubble memory, we set
this to all zeroes.

b. char issububcmd(char command)
This subroutine is used to issue a command to the bubble memory con-
troller on the main controller circuit board. The sequence it follows is given in detail in
[Ref. 1: pp.d40-45]. For our purposes, the sequence is as follows:

1. Make sure the BUSY bit is 0 before sending anyv comumand (except ABORT). To
do this, we read the status code in the BUBCTRL port and check the BBUSY bit.
When this is a 0, we can proceed. More than one attempt will be made to succeed
in this. If the check fails repeatedly, the subroutine displays the status code and
returns a value of FALSE.

2. Issue the command to the bubble memory controller by calling the function
output().

3. Check to see that the command was accepted. This is signalled by the bubble me-
mory controller’s setting the BUSY bit once again. If the BUSY bit is not set
within a reasonable amount of time, the command was not accepted. In the case
of the commands FIFO RESET and WRITE BOOTLOOP REGISTER, we can
ignore the fact that the BUSY bit never was set if we get an OPERATION COM-
PLETE anyway.

4. Wait for the OPERATION COMPLETE code from the bubble memory controller.
If this does not occur within a reasonable time, the command did not succeed.
The phrase “a reasonable time” in this subroutine means that the bubble memory
controller’s status was inspected BTRIES times without success. e have written the
subroutines such that they will regard the command as having been successful if the
bubble memory controller returns an OPERATION COMPLETE code even if the
BUSY bit remains 0. ([Ref. 1] does not suggest that this latter indication can occur.
However, if the command is accepted and completed very quickly, the control program
might never observe the BBUSY bit, so it seems to be a good idea to permit it.)
It was our intention that this subroutine be used to issue a/l commands to
the bubble memory. However, it executed too slowly to permit its use with data trans-
fers. The subroutines bubread() and bubwrite(), written in assembly language, were

124

written for this purpose. In the case of other commands, TRUE is only returned if the
bubble memory returns OPERATION COMPLETE in the status byte. FALSE is re-
turned otherwise.
2, File bubrw.s
a. char bubxfer(void)

This subroutine is required during initialization of the bubble memory. It
writes 40 OxfT characters to the bubble memory. It returns TRUE if the transfer worked;
FALSE otherwise. The subroutine is written in assembly language for speed, but is
called in the same manner as a C subroutine.

b. char bubread(char *buffer)

This subroutine reads data from the bubble memory and places it in a buffer
whose address is passed as a parameter. It is written in assembly language in order to
execute sufficiently rapidly to preclude overflowing the buffer in the Bubble Memory
Controller (BMC). The listing of this subroutine includes many comments which explain
the purpose of each step. The following is a list of the actions which must be accom-
plished by this subroutine.

1. Save the contents of all registers.

2. Issue the FIFO reset command to the BMC.
3. Issue the READ command to the BMC.
4

. Wait for the BLUSY bit to become a one. If this never happens, the command has
failed.

5. Input 64 characters from the bubble memory. The FIFO bit must be set to 1 be-
fore each character is read. If this bit never becomes a 1, the command has failed.

6. Restore the contents of all registers to what they were before the subroutine began
to execute.
c. char bubwrite(char *buffer)

This subroutine writes data to the bubble memory from a buffer whose ad-
dress is passed as a parameter. It is written in assembly language in order to execute
sufficiently rapidly to preclude having the Bubble Memory Controller (BMC) empty its
internal buffer before all the data has been sent to it by the experiment controller. The
listing of this subroutine includes many comments which explain the purpose of each
step. The following is a list of the actions which must be accomplished by this subrou-
tine.

1. Save the contents of all registers.
2. Issue the FIFO reset command to the BMC.

125

3. Issue the WRITE command to the BMC.

4. Wait for the BUSY bit to become a one. If this never happens, the command has
failed.

5. Output 64 characters to the bubble memory. The FIFO bit must be set to 1 before
each character is written. If this bit never becomes a 1, the command has failed.

6. Restore the contents of all registers to what they were before the subroutine began
to execute.
3. File clock.c
a. void clockint(struct datetime *clock, struct idatetime *iclock)

This subroutine takes a datetime structure pointed to by clock and converts
it to an idatetime structure pointed to by iclock. The function bed_int() is used to convert
the binary coded decimal (BCD) format used in the datetime structure into the integer
format used in the idatetime structure.

b. char clockcompare(struct idatetime *clockl, struct idatetime *clock?2)

This subroutine compares the two times pointed to by clockl and clock2.
It will return TRUE if the first time is equal to or later than the second; FALSE other-
wise. To do the comparison, each element of the time is compared. from month down
to second, in that order. The principle difficulty is in comparing dates that span New
Year's Day. We want January 1 to be regarded as coming after December 3}, not be-
fore.

To do this we first subtract the second month from the first. The difference
is taken modulo 12. The modulo operation would not change any difference from 0
through 11; a difference of —11 through —1 would be changed to 1 through 11 respec-
tively. Results in the range 1 through 35 indicate that the first date is later than the sec-
ond.

For example, if the first date is January (month 1) and the second date is
December (month 12), the difference is 1 — 12=—11. When this is taken modulo 12,
we get 1. Thus January is 1 month after December.

If the first date is June (month 6) and the second date is December (month
12), the difference is 6 — 12 = —6. Taken modulo 12, this is 6. Since this is greater than
S5, we regard June as coming before December, not after.

¢. void clocksum(struct idatetime *result, struct idatetime *clockl, struct
idatetime *clock2)

This subroutine adds together the date and time pointed to by the idatetime
structure clockl to the number of months, days, erc. in the idatetime structure pointed

126

to by clock2, vielding a new idatetime structure pointed to by result. This is useful when
from a given date and time one wishes to calculate a later date and time. The usual use
of this subroutine is, given the current date and time, to calculate the date and time after
some given delay has elapsed.2S

It starts by adding the seconds together, and works from there up to the
months. After each addition, checks are made to ensure that the result is valid. If not
(e.g., 63 minutes is not valid), the result is corrected and any excess is carried over to the
next highest unit of time.

The fact that different months have different lengths is a bit of a nuisance
which is overcome by considering the three possible cases: a month can have 31 days,
30 days or 28 davs. Leap vears are ignored, since the real-time clock does not store the
current vear. and so is unaware of leap vears.

d. void show_waketime(struct idatetime *waketime)

This function displavs the date and time stored in the idatetime structure
pointed to by waketime on the terminal.

e. void dump_iclock(struct idatetime *clock)

This subroutine displays the date and time (when stored in integer format)
on the terminal.

J. void get_time(struct idatetime *clock)

This subroutine asks the user for the date and time. Each response is
checked for correctness to preclude invalid dates and times being entered. The function
getint() is used to get the responses from the kevboard. The responses are converted to
binary-coded decimal (BCD) format and stored in the structure whose address is passed
as a parameter to the function.

g. void show_waketime(struct idatetime *waketime)

This subroutine displays on the terminal the date and time when a time-out
will have been completed. The date and time are provided in the structure whose address
is passed as a parameter.

h. char timeout(int delaytime, int measure)

This subroutine has two purposes:

1. It initiates a time-out sequence.

2. It checks to see whether a time-out sequence has been completed vet. This is the
case when the wake-up time calculated previously has been reached.

25 While it could be used to add two dates together, this would not be particularly meaningful.

127

The subroutine calls the function allow_ctrl_interrupts() to permit its being
interrupted during ground testing by the depression of a key on the terminal. It then
calls clockread() to get the current date and time. This is converted to integer format
by a call to clockint(). If the parameter delaytime is the constant NULL, then the
function’s purpose is to see whether a time-out set previously has expired. The function
clockcompare() is invoked to compare the stored date and time with the current date and
time. Its result is returned as the result of timeout().

[f the parameter delaytime is nor the constant NULL, then the function’s
purpose is to initiate a time-out sequence. The structure waittime is initialized to zero.
One of its elements is then modified to contain the number of delay units passed as the
parameter delaytime. Which element is modified is determined by the parameter
measure, which can take on the values MONTH, DATE. HOURS, MINUTES, or
SECONDS. The subroutine clocksum() is called to add together the current time and
the amount of time to wait. The result is displaved by calling the function
show_waketime(). The wake-up time is stored in a global structure, waketime, so its
contents will be undisturbed the next time this function is called.

4. File convert.c
a. char atoh(char *ascii)

This function converts the two-character hexadecimal string pointed to by
ascii and converts it to a single character.26 If the characters in ascii are in the range ‘0
through ‘9" or ‘a’ through ‘f, then they will be properly interpreted as hexadecimal digits.
Capital letters (‘A’ through ‘F’) and any other characters are treated as zeros. For ex-
ample, the character string “63" would be converted to the single character ‘c’, since the
hexadecimal representation of this ASCII character is 0x63.

b. unsigned int atohexint(char asciif])

This subroutine converts a four-byte ASCII string of characters which rep-
resent a valid hexadecimal word into a single unsigned integer. No checks are made to
see that the character string /s valid, but invalid characters are sufficient to cause the
subroutine to stop processing the character string. If no valid string of hexadecimal
characters is found, the value 0 is returned by this subroutine.

c. int atoi(char *s)

This function converts a four-character string to an integer. The string may

optionally include a sign (+ or —) in the first position. Successive characters will be

26 No check is made to ensure that ascii is only two characters in length.

128

converted to numeric values if they are in the range ‘0’ through ‘9". Conversion ceases
as soon as a character fails to fall within this range. No checking is done to ensure that
the number of digits provided can fit within the number of bytes reserved for integers.
This subroutine is from Bilofsky [Ref. 18].

d. char *bcd_asc(char bed)

This function converts a binary coded decimal (BCD) character into an
ASCII string. For example, the single byte 0x63 is converted to a two-character string
“63". The BCD character is first converted to an integer. It is assumed that an integer
occupies two bytes. If the leading nibble of the character is a 0, it will be converted to
a space (‘ '). No check is made to see if the BCD character is valid. The function returns
a pointer to the ASCII string representation.

Since i1t always uses the same storage location to hold the converted result,
the string should be copied to another variable before bed_ascii() is called again. for the
old contents will be destroved.

e. int bed_int(char bed)

This function converts a binary coded decimal (BCD) character into an in-
teger. No checking is done to ensure the BCD character is valid. The integer result is
returned.

J- char *ctoh(char byte)

This function converts a character byte into a hexadecimal string represen-
tation. [t returns a pointer to the string. Since it always uses the same storage location
to hold the converted result, the string should be copied to another variable before ctoh()
is called again, for the old contents will be destroyed.

g- char int_bcd(int decimal)

This function converts an integer into BCD format. It will handle positive
integers in the range 0 through 99. No checking is done to ensure the integer falls within
this range. The function returns the BCD result as a single character.

h. char *itoa(int n, char[])

This function converts an integer n into an ASCII representation. It con-
verts the integer into digits by taking it modulo 10 and storing the digits in character
form in reverse order. Upon completion, it reverses the string in place. The result is
stored in the location pointed to by the parameter s. No check is made to ensure this
location has enough storage. This is the user's responsibility. However, in a machine

with two-byte integers, the largest possible integer will contain five digits. The user

129

should allow two extra locations for the sign and the terminating NULL character, or
seven characters in all. This subroutine is from Bilofsky [Ref. 18§].
i. char tolower(int c)

This function converts upper case alphabetic characters into lower case
ones. This subroutine is from Bilofsky [Ref. 18]. Its use here is a consequence of our
having used this C compiler during the early work on this project. This function is
provided in the library supplied with the Uniware C Compiler; with the Toolworks C
Compiler, its source code had to be included with our source code. It could have been
removed when we switched over to using the Uniware C Compiler, but it never was.
There exist other vestiges of our early use of the Toolworks C Compiler that have never
been eradicated.

J. char *uitoh(unsigned int word)

This subroutine converts an unsigned integer to hexadecimal ASCII string
format. For example, the unsigned integer ‘28’ is converted to the character string
“1C” since that is its ASCII representation.

5. File delay.s
a. void delay(int n)

This function provides a timung delay of nx 10 ms . It is written in Z-80
assembly language. It will only work correctly if the system clock has frequency f = 2.5
MHz. It is adapted from a program written by Mr. David Rigmaiden of the Naval
Postgraduate School.

6. File expmnt.c
a. char ad_read(char port)

This subroutine will obtain one character from that channel of the Ana-
log-to-digital (A D) Converter whose address is pass as the parameter port. It functions
by writing anything at all to that port address (we chose arbitrarily to send a 0), then
by waiting for one 10 ms period during which the A’D converter responds, and then fi-
nally by reading a character from the same port. This is the character returned by the
subroutine.

b. int adtoint(char addata, unsigned long multiplier)

The purpose of this subroutine is to convert a character input from the
Analog-to-digital (A/D) Converter into an integer which represents the measured quan-
tity in more meaningful units than an arbitrary number in the range [0,255], which is all
that the A D converter can provide. It would be natural to perform the arithmetic
scaling of the input eight-bit number addata to the corresponding output value by per-

130

forming ordinary floating-point multiplication and division. This has one drawback in
a microprocessor application: the executable code to support floating point operations
takes up rather a large amount of memory. In tests we performed using the floating
point arithmetic operators provided with the Uniware C Compiler, the subroutines re-
quired two extra EPROMS of 8 KBvtes apiece. We had the room in our controller to
accept this, but chose not to do so since our need for floating point arithmetic was lim-
ited to this one function. To program two complete EPROMS every time a new version
of the program was compiled solely to provide this one use of floating point of arith-
metic was not warranted, in our judgement.

The alternative was to perform the scaling operation with fixed point arith-
metic. The C programming language supports integer operations, but fixed point oper-
ations with a movable decimal point are not supported. This subroutine uses an implied
decimal point. As far as the subroutine is concerned, the operands are integers, plain
and simple. By using unsigned long integers, we have 32 bits of accuracy, permitting
numbers in the range [0,4.294967296 x 10°]. For our purposes. we have have used a di-
visor of 10%. This has the effect of reducing the range of useful numbers to {0.4294) .

The purpose of these manipulations is to permit all the accuracy promised
by the provision of eight bits from the A D converter while avoiding floating point
arithmetic. The details of the operation are included as comments in the program listing,
so will not be repeated here.

c. void alter_pageO(struct pageOdata * pagezero)

This subroutine permits the user to alter the flags stored in page 0 of the
bubble memory. Since these flags describe the current status of the experiment, and also
indicate which area of the bubble memory is available for use, their alteration amounts
to initializing the status of the experiment to a known value. The use of this subroutine
is described in Chapter V. HOW TO GET THE EXPERIMENT READY FOR A
LAUXNCH on page 63. It displays a menu using the same method used in so many other
functions in the control program. This method was already presented in the description
of the function main(). A while loop presents the menu repeatedly until choice Z is
made. The menu shows the current values of all the information stored in page 0 of the
bubble memory. In most cases it also shows the other possible value of each flag. The
sole exceptions are the value of the next available page, which can fall in the range
[1,8191], and the flag RECORD_start_time, which is a date and time.

If any of the values is changed, page O is rewritten.

131

d. char bad_idea_to_record(char show)

In the abridged experiment, the only phase of the experiment is record. It
would be unfortunate if the Solid State Data Recorder were restarted in record mode
after the launch had already occurred, for this would erase the recording of the launch
and replace it with the silence that fills the cargo bay in space, or possibly all the sounds
of the launch except the moment of ignition of the solid rocket motors. How could this
happen? A power fault, for whatever reason, would cause the controller to start at the
beginning upon the restoration of power. There is no obvious way for the controlier to
be sure that it is still on the ground, which certainly is the only time when it is really a
good idea to initiate the record phase. Of course, it is easy to determine whether it is in
space or not simply by checking the status of the barometric pressure switches. QOur
solution is simply to prohibit the initiation of record mode more than once in 12 hours.
If a mission is scrubbed, it will be at lgast 24 hours before it is rescheduled. The 12 hour
delay will have elapsed by this time, and the abridged experiment could then be per-
formed as planned.

The long and the short of these considerations is that this function com-
pares the current time to the time when record was last initiated. This time is stored in
page O of the bubble memory. If insufficient time has elapsed. the function returns the
value TRUE, meaning that it is a bad idea to record. If 12 hours has elapsed, it returns
the value FALSE, meaning it is nor a bad idea to record; record mode can be initiated,
in this case.

e. void display_pageO(struct pageOdata * pagezero)

This subroutine displays the contents of page 0 of the bubble memory on
the terminal.

J- void do_sweep(void)

This function performs the sweep phase of the unabridged experiment. It
turns on (and logs the fact that it has done so) the Analog-to-digital (A. D) Converter
and the Solid State Data Recorder (SSDR). It then commands the SSDR to enter sweep
mode. After a 10 second time-out, it applies power to the Voltage Controlled Oscillator
(VCO) which is responsible for filling the Space Shuttle cargo bay with sounds of known
frequency.

Next it initiates a 13 minute time-out. The SSDR should signal completion
of the sweep phase before this much time has elapsed. If this does not happen, the

time-out allows the control program to stop waiting for it to do so. Upon completion

132

of the sweep phase, the do_sweep() phase removes power from the VCO, SSDR, and A D
converters.
g- char initialize(void)

This subroutine extracts the status information from page 0 of the bubble
memory when the expmnt() program begins to execute. It will remove power from the
Voltage Controlled Oscillator (VCO), which performs the sweep phase, and from the
heater subsystem, if either of these is on. It will not remove power from the other sub-
systems, which also might be on when power is first applied. How can this be, and why
does it not remove power from them? One way in which power might be applied is after
a brief power fault. If the fault affected the controller but not, say, the Solid State Data
Recorder (SSDR), and if sweep mode had been initiated prior to the loss of power, re-
moving power from the SSDR would have the effect of terminating sweep mode and this
would raise the possibility that an otherwise successful recording of the ignition of the
solid rocket motors would be foiled. The SSDR and other subsystems, therefore, should
not be interfered with at this point.

h. char listen(void)

This subroutine applies power to the matched filter circuit board. It then
calls we_launched(). This function returns DLAUNCH if a launch has occurred, and this
value is returned by listen(), too. If a launch has not vet occurred, listen() checks to see
if the matched filter has detected the starting of the Auxiliarv Power Units (APUs). If
so, the function returns the value DAPUON. If neither condition has occurred, the
function calls the subroutine look_ahead_discard(). giving the user (if any) to get out of
the listen() function by depressing any key on the terminal. Barring one of these three
conditions, the function will continue making these same checks indefinitely.

i. char logevent(char event)

This subroutine makes coded entries in the bubble memory of all events
which take place. While it is doing this, it takes readings from each of the channels of
the Analog-to-digital (A'D) Converter and stores the results in the same page of the
bubble memory in which the event code is stored. If the bubble memory is already full,
which would occur after 2 x 8191 = 16,382 events, the subroutine refuses to store any
more events. This will preclude the destruction of the records of earlier events. How-
ever, we do not expect this many events ever to occur on a single mission of the Space
Shuttle. The interval between successive events after the first two minutes of flight is five

minutes; at this rate, it would take nearly 57 days to fill up the memory.

133

There are two possibilities when the function prepares to write a page of
information to the bubble memory. Either this is a brand new page, or it is the second
half on an existing page of stored data. In the former case. the second half of the page
is filled with NULL characters. This effectively erases any data previously stored in this
upper half-page. The subroutine next reads the current date and time and stores this in
the structure where all the information is assembled prior to being transferred to the
bubble memory. The event code is passed to the function logevent() as parameter event
to be stored in the bubble memory. Each channel of the A'D converter is sampled and
the results also are stored in the bubble memory. If the event code is CSSWEEP, then
the command to initiate sweep mode has just been issued, and the flag sweepstarted in
page 0 needs to be set to TRUE. If the event code is DPRESSURE, then the flag
launchdone in page 0 needs to be set to TRUE. Then the new record of information can
be written to the next available half of the next available full page of the bubble memory.
The page number and half page number are extracted from page 0 of the bubble mem-
oryv. Page 0 needs to be updated, and this is done also.

J. void log_menu(void)

This subroutine provides the user with a menu for changing the contents
of page 0 of the bubble memory. Recall that this information describes the current sta-
tus of the experiment. It is important that this information be initialized correctly prior
to the launch of the Space Shuttle. How to do this is described in Chapter V. HOW
TO GET THE EXPERIMENT READY FOR A LAUNCH on page 63.

The details of how the menu is generated are the same as explained in the
description of the function menu() and will not be repeated here.

k. void monitor_heaters(void)

This subroutine has the job of maintaining the temperature of the bubble
memory at a sufficiently high level that it can be operated safely. If it finds that the
current temperature is lower than the minimum desirable temperature (12°C) it will turn
the heaters on. If it finds that the temperature is above the maximum desirable tem-
perature (14°C), it will turn the heaters off. This is not the temperature above which the
bubble memories will lose their memory. Rather it is a temperature chosen to be slightly
higher than the minimum desirable temperature. If the temperature can attain this level,
the heaters will be shut off for a while to save power. If the temperature falls to the
minimum desirable level, this still is 2°C above the minimum operating temperature, al-
lowing a reasonable margin for safe operation. The 2°C spread is wide enough to pre-
clude excessively frequent operation of the relay switches, too.

134

l. void post_launch(void)

This subroutine performs the caretaking functions that follow the successful
launch of the Space Shuttle. Its first action is to remove power from all subsvstems.
It then initiates a five minute time-out. During this wait, it calls monitor_heaters() re-
peatedly to give them an operation to operate the heater subsystem. It also checks the
barometric pressure switches if they have not vet reported a completed launch. During
ground testing it is useful to have a way of interrupting this phase of the mission.
Calling look_ahead_discard() lets the user do so by pressing any key on the terminal.
At the completion of the five minute delay, logevent() is called to record a “read A.D”
event. The function logevent() takes care of reading all the Analog-to-digital Converter
(A'D) channels whenver it is called. Finally, a call to voltages_low() is made to ensure
that if the voltages on the 10V power busses falls to too low a level. the experiment will
be terminated. This will preclude an attempt to operate the bubble memories with in-
sufTicient current, which could cause them to lose their contents.

m. void record(void)

This subroutine performs the record phase of the abridged experiment. The
first action taken by this subroutine is to read the current date and time and to place this
information in the structure of data to be stored in page 0 of the bubble memory. A call
to logevent() immediately after this has the effect of ensuring that this date and time are
transferred to page 0 right away, along with taking current readings of all the channels
of the Analog-to-digital (A’'D) Converter.

The record() subroutine then applies power to the A'D converters and the
Solid State Data Recorder (SSDR), commands the SSDR to enter record mode, and in-
itiates a 20 minute time-.... The SSDR should report completion of record mode prior
to the expiration of this delay, but even if it fails to do so, the subroutine will be able to
terminate the record phase of the experiment. While waiting for the 20 minutes to
elapse, the subroutine calls baro_switch() if that function has not previously reported a
successful launch. Upon the completion of the record phase, the subroutine removes
power from both the SSDR and the A'D converter.

n. void short_experiment(void)

This subroutine performs the abridged experiment. It first checks to see
whether a launch had occurred previously. This could be the case if a power fault had
caused the controller to start executing its program from the beginning. If a launch has
been recorded already, the subroutine refuses to put the Solid State Data Recorder

135

(SSDR) into record mode. This will prevent the successful recording of a launch to be
wiped out.

If a launch has not occurred previously, then the subroutine will wait until
it is alright to initiate record mode. This is indicated by the subroutine
bad_idea_to_record() returning the value FALSE, meaning it is not a bad idea to start
record phase. Next the subroutine will call listen() to listen for the starting of the Aux-
iliary Power Units (APUs). The listen() subroutine will keep control until either the
APUs start, or until some indication of a launch is detected. At this point, the record
phase is initiated.

It is conceivable that at the end of the record phase, we would discover that
we had jumped the gun and that the Space Shuttle was still on the ground. To see
whether or not this is the case, the subroutine calls baro_switch(). if that subroutine had
not previously reported that launch had definitely been completed. If no launch has
occurred, we are in a bit of a quandary. Is launch imminent? How long will it be before
it occurs? It would be nice simply to re-initiate record mode, but this consumes consid-
erable power. What is potentially worse, the power fault might occur at the moment
of launch. It will still be several moments before the barometric switches indicate that
a launch has occurred. Since we cannot ascertain whether the launch has occurred or
not, it is best to assume that it has and not to re-initiate record phase, which would erase
the recording of the launch. So we have adopted the solution of waiting until at least
12 hours more have elapsed before entering the record phase again.

At the successul completion both of record phase and a launch, the
short_experiment() subroutine calls post_launch() to perform all the caretaking functions
required during the Space Shuttle’s mission.

0. void show_event(char event)

This function is used to display event codes stored in the bubble memory log
in a readable form on the display terminal. It does this by displaying the appropriate
character string from an array of strings which describe the various codes.

p. void shut_down(void)

This function removes power from any subsystem which currently is re-

ceiving power. It calls logevent() to record any actions it takes.
g. char ssdrmode(char mode)

This subroutine issues commands to the Solid State Data Recorder (SSDR).
If the command is unsuccessful the first time, it will make several more tries before giv-
ing up. Once the command has been issued, the subroutine waits for 20 ms and then it

136

checks the status code returned by the function ssdr_status(). The desired response from
the SSDR is that the commanded operation has been completed successfully, which is
indicated by the return of the constant NORMOP. The subroutine ssdrmode() returns
TRUE if this occurs; FALSE otherwise.

r. char ssdr_status(void)

This subroutine reads the status code from the Solid State Data Recorder
(SSDR) and returns it to the calling function.

s. char voltages_low(void)

This function checks the channel of the Analog-to-digital (A/D) Converter
which allow the measurement of voltage on the 10V bus. The value read is converted
to voltage by the function adtoint(). If that voltage falls below the minimum voltage
desirable on the 10V bus, then the function returns the value TRUE, meaning that the
voltages are too low, and that the experiment should halt. Otherwise it returns the value
FALSE.

t. char we_launched(void)

This subroutine first calls the function baro_switch() to see whether the ba-
rometric pressure switches have detected an ascent of the Space Shuttle. If this has oc-
curred, or if the Vibration-activated Launch Detector has detected a launch, this
function returns the value DLAUNCH. Otherwise it returns the value FALSE.

7. File fputc.c
a. int fputc(int chr, void *device)

The UNIWARE compiler provides the standard C output subroutine
printf() to provide output to the standard output device. However, this subroutine re-
quires the user to provide a subroutine fpute() to handle the output of a single character
to any arbitrary device. We only support output by fputc() to the RS-232C terminal, so
this subroutine is specific to that device.

This function calls the subroutine allow_ctrl_interrupts() to permit the user
to interrupt operation of the control program. The subroutine will not output a char-
acter if, upon checking, it finds there is no terminal attached to the serial interface port.
Thus, when the experiment is operating, calls to printf() are of no effect unless there is
a terminal connected.

The subroutine returns —1 if there is no terminal connected. This is the
code specified by UNIWARE if fputc() is unable to do the output operation. If there
is a terminal attached, fputc() repeatedly polls the serial interface, waiting for it to be

137

ready to accept output data. It then outputs the character, and returns that character,
again as specified by UNIWARE. [Ref. 17: Compiler Section, pp. 43 and 52)

8. File global.c

This file contains the declarations of variables used throughout the control

program. The author’s predilection is to avoid the use of global variables. However, it
can sometimes become so awkward to observe this preference as to make it sillv. It is
desirable to hold the use of global variables to a minimum, however.

9. File inout.c

a. void allow_ctrl_interrupts(void)

This subroutine makes it possible for the user to interrupt the execution of
the control program. Whenever it gets control, it calls the function look_ahead() to see
if any key of the terminal has been depressed by the user. If not, then the function re-
turns without further ado. If a key has been depressed, however, it mayv have been one
of the two control kevs CTRL Y or CTRL S. If so. the function termin() is called to
remove the character from the input bufler, and to respond appropriately to the input
control character.

b. void dump(unsigned int address, unsigned int length)

This subroutine displays the contents of a section of memory on the display
terminal. The variable address designates the address of the first character of data to
be displayed. The variable length specifies how many characters to display. The display
shows a hexadecimal representation of every character in the chosen section of memory,
and if that character has a printable form, that form also is displaved. This function is
of value only for debugging the control program.

¢. char gethex(void)

This subroutine obtains a hexadecimal string from the terminal. Up to
HSTRLEN characters will be accepted. Processing will cease as soon as a character not
in the ranges ‘0’ through ‘9’, ‘a’ through ‘f’, or ‘A’ through ‘F’ is entered. The input
string will be converted to a single character by calling atoh(), and this character will be
returned. For example, the string “6a"” would be converted to the ASCII character ‘',
whose hexadecimal representation is 0x6a. This subroutine is useful for getting one-byte
system port addresses from the user if he is more likely to know them in hexadecimal
than in decimal.

d. unsigned int gethexint(void)

This subroutine is very similar to gethex(), except that it accepts two hexa-

decimal bytes, not just one.

138

e. int getint(void)

This subroutine obtains a decimal string from the keyboard. Up to
STRLEN — 1 digits can be entered. Processing will cease as soon as a character not in
the range ‘0’ through ‘9’ is entered. The input string will be converted to an integer by
calling atoi(). and this value will be returned.

J- int getpageno(void)

This subroutine obtains a page number in bubble memory from the user.
Valid responses are in the range 0 through MAXPAGE. It uses the subroutine getint()
to obtain the response.

g. char look_ahead(char *character)

This function checks to see if a key has been pressed on the display terminal.
Of course, if there is no terminal attached, there is no point in even looking. so the
function returns instantly in this case with a value of FALSE. The variable
console_data_available is one of two variables known to all {functions in the file inout.c.
It will have the value TRUE if the function look_ahead() or the function termin() dis-
covered previously that there was a character available to be read. The look_ahead()
returns this character to the calling function for it to inspect, but it does not remove the
character from the bufler. Further calls to look_ahead() or to termin() would obtain the
same character.

If there is no character already in the buffer (that is, if
console_data_available is FALSE,) then look_ahead() checks the RS232C interface to see
if a key has been pressed. If so, the character is read and placed in the variable
console_buffer for future use by look_ahead() and termin(). It also is returned to the
calling function, and the value of console_data_available is set to TRUE since a character
now is in the console buffer.

h. char termin(void)

The primary purpose of this subroutine is to read a character from the ter-
minal whenever the latter has one available. This condition is known to be true when-
ever bit PRTRDY of port PRTCTRL is a 1. The input character is returned to the
calling function.

In order to permit the control program to be interrupted, however, the
function termin() interprets the characters CTRL S and CTRL Y specially. CTRL S is
interpreted to mean “stop displaying data on the display terminal” if data is being dis-
played, or “start displaying data on the display terminal” if the display has already been
halted by CTRL S. In other words, the CTRL S switch operates as a toggle switch to

139

stop and start the display of data. CTRL Y is interpreted to mean “call the diagnostic
subsystem menu”. We do not wish this to be done more than once at a time, for oth-
erwise we might make so many recursive calls to the program menu() that the stack
would be corrupted.

The variable allow_menu_call will be TRUE the first time termin() is called.
If CTRL Y is entered, allow_menu_call is set to FALSE, and further calls to menu() are
precluded thereafter. It is only returned to the value TRUE if the menu() program is
completed by the user later.

The variable waiting_for_ctls will switch from FALSE to TRUE or back
again each time CTRL S is entered by the user. Data from the kevboard will only be
accepted when this variable is FALSE, in which case the display has not been halted.

The variable ctrl_valid_data will be a «copvy of the variable
console_data_available described earlier.

If no data has been read into the console buffer previously by termin() or
by look_ahead(). then termin() will wait until a character /s available. Once this occurs,
the variable console_data_available is set to FALSE, since termin() has filled and emptied
the console bufter all at once. A switch statement allows the character to be interpreted.

i. void testinput(void)

This subroutine asks the user to specify a port address in hexadecimal. It

then reads a character from that port and displays it on the terminal.
J. void testoutput(void)

This subroutine asks the user to specify a port address in hexadecimal, and
then asks for a hexadecimal byte to be sent to that port. The data is accordingly output
to the port.

10. File main.c
a. void memory_dump(void)

This subroutine asks the user for the first address in memory whose con-
tents he wishes to inspect, and for the number of characters which he wishes to see dis-
played. It then calls the subroutine dump() to honor the request. This function is only
useful for very low-level debugging of the software.

b. void testio(void)

This subroutine presents a menu permitting the user to send data to any
port, and to read data from any port, in the system. The method of implementing a
menu is the same as that presented in the description of the function menu() and will not

140

be repeated here. For output to a port, the function testinput() is called. For input from
a port, the function testoutput() is called.
11. File mbrk.s
a. char *mbrk(long size, long *realsize)

This subroutine is written in Z-80 Assembly language. It is described in

[Ref. 17: Compiler section, p. 51}, from which it is drawn.
12. File newio.s
a. char input(char port)

This subroutine is written in Z-80 Assembly language. It inputs a character

from a port and returns it to the calling function.
b. void output(char port, char data)

This subroutine is written in Z-80 Assembly language. It outputs a char-

acter to a port.
13. File power.c
a. void power_status(void)

This subroutine returns the status byte from the POWERIN port. This
status is described in Table 3 on page 16.

b. char power_write(char command)

This subroutine issues commands to the power circuit board. Valid com-
mands are SSDROFF and SSDRON (to turn the Solid State Data Recorder off and on);
VCOOFF and VCOON (to turn the Voltage Controlled Oscillator off and on); ADOFF
and ADON (to turn the Analog to Digital Converter board off and on); MATFOFF and
MATFON (to turn power to the matched filter, launch detector and barometric switch
off and on); and HEATOFF and HEATON (to turn power to the heater circuit off and
on).

A command can be executed by writing it to the POWEROUT port and
then setting bit PWRSTROBE in port C, to a 1. A delay of length PWRDELAY is re-
quired before bringing that bit to 0 again. Another delay of the same length is ihen re-
quired. These delays ensure proper functioning of the relays. Each bit in the status byte
returned by the function power_status() indicates whether the associated relay is on or
off. The bit is 0 if the relay is on; 1 otherwise. The power_write() function examines the
bit corresponding to the relay it attempted to switch. A TRUE is returned if the relay
is in the desired position; FALSE is returned otherwise.

141

-

14. File start.s

This file contains the controller’s start-up code. [t is written in Z-80 Assembly
language. Whenever the Z-80 receives power, it starts executing from location 0x0000.
The start-up code initiates the stack pointer to the value STACKTOP and then causes
a jump to START. All other Z-80 interrupt locations are initialized such that they cause
a jump to the same location, since interrupts are not used by the controller. At START,
the ix register is initialized to 0. This register is used by the C compiler to point to pa-
rameters and local variables within C programs.

Memory may be requested by C programs using the mbrk() function provided
with the UNIWARE C Compiler. The start-up code uses a variable MBRKPTR to
point to the next available address of allocable memory. Initially this variable is set to
MRAM, a global variable set in the file \vibro\control\object\spec to point to the begin-
ning of all allocable memory. Once mbrk() has obtained some memory, it keeps it. so

the start-up code never needs to reclaim it. Consequently, MBRKPTR can only in-

crease; it can never decrease.

ZRAMSZ is the number of RAM locations starting at ZRAM which are used
for uninitialized. static variables in the C programming language subroutines. The
start-up code writes zeros to all these locations, because the C programming language
specification is that uninitialized static and external variables be initialized to 0 by the
compiler [Ref. 16: p. 198].

IRAMSZ is the number of RAM locations starting at IRAM which will contain
initialized data. This data is stored in ROM locations starting at RAMDATA at the
time the program is burned into ROM. The start-up code copies it from ROM to RAM.
Finally, control is passed to main(), the user's C program. If main() should ever return
control to the start-up code, a halt instruction is executed. The start-up code is adapted
from an example given in [Ref. 17: Compiler Section, pp. 13-15.]

142

Table 12. CONTENTS OF SUBDIRECTORY \VIBRO\CONTRLR\BATCH

File

Contents

ASM.BAT

This batch file simplifies the assembly of Z-80 assembly lan-
guage source code. To use it, tvpe asm < source filename > .s.
For example, to assemble the file delay.s, type asm delay.s.
Note that the file type need not be s, but whatever it is, it must
be present. Use of s is recommended for clarity. The proce-
dure produces object files in subdirectory \vibro\contrir\object
and assembly code list files in subdirectory \vibro\contrir\list.
See the description of the batch file asmlist.bat for instructions
on how to produce this listing file, which includes all addresses
supplied by the linker.

ASMLIST.BAT

This batch file produces a listing of the assembly language
source file generated by the Z-80 assembler. To use it, tvpe
asmlist < filename.filetype >. The output i1s appended to the
file \temp\print. It can be printed by use of the batch file
promout.bat. These listings include all global addresses sup-
plied by the linker. provided \vibro\contrlr\vibro.out has been
generated by promlink.bat.

C.BAT

This batch file simplifies the compilation of C source code. To
use it. type ¢ < source file name >.c. For example, to compile
the file vibro.c. tvpe ¢ vibro.c. Note that the file tvpe need not
be ¢, but whatever it is. it must be present. Use of ¢ is recom-
mended for claritv. The procedure produces object files in
subdirectory \vibro\contrir\object and assembly code list files in
subdirectory \vibro\contrlr\list.

See the description of the batch file asmlist.bat for instructions
on how to print listing files, which show all addresses supplied
by the linker.

LIST.BAT

This batch file produces a listing of anv MS DOS file. To use
it, tvpe list < filename.filetype >. The output is appended to
the file \temp\print. It can be printed by use of the batch file
promout.bat.

143

LOADMAP.BAT

This batch file appends a copyv of the load map into
\temp\print. [t can be printed by use of the batch file prom-
out.bat.

The load map shows the absolute addresses at which the eight
regions of code produced by the compilation, assembly, and
linking steps are placed. It is useful to have this so that you
know whether the controller has enough RAM and ROM in-
stalled to hold the output program. The listing shows the
starting address of each region and the number of bytes it oc-
cupies. Regions reset, code, const, string, and data all must be
stored in ROM initially. Of these, only data belongs in RAM
eventually, vet it must be stored in ROM initially.

The reason is that it contains C variables whose values have
been initialized. If they were not stored in ROM. those values
would not be available at execution time. The start up routines
in \vibro\contrir\asmsource\start.s cause these initialized vari-
ables to be copied from ROM to their proper locations in
RAM. These locations are those shown in the load map.

Thus, in addition to the ROM space required for the other four
regions, be sure to allow enough room for the data region to
be loaded into ROM. too. For example, if there is only one
8K ROM installed at location 0x0000, but the load map shows
that more than SK of ROM is required. then there is insufli-
cient ROM in place. Either more must be added. or the pro-
gram must be reduced in size. How to load the executable
program into ROM is described below in 2. Getting the Exe-
cutable Program into EPROM!I on page 146.

PRINTALL.BAT

This batch file will produce a listing of all source files, all batch
files, a load map, and a svmbol listing. The output will be ap-
pended to the file \temp\print. Normally vou would first empty
this file using readvout.bat. After producing a complete listing,
it could be printed on the printer using promout.bat.

PROMLINK.BAT

This batch file simplifies the conversion of the object modules
into an executable output program. To use it, just type prom-
link.

[t creates two output files. The first of these is
\vibro\contrlr\vibro.out. It contains information about the ad-
dresses assigned by the linker to global variables. This file is
used by the batch file promsym.bat.

The other file which promlink.bat produces is vibro.hex which
can be loaded into an EPROM.

PROMOLUT.BAT

This batch file causes the file \temp\print to be printed. The
latter file contains the output of the list, asmlist. loadmap, or
promsym batch file executions. It does not erase \temp\print.
Use readyout.bat to do this.

144

This batch file appends a listing of all the variables known
globally throughout the control program to the file
\temp\print. These include both C language source code vari-

. ables, Z-80 assembly language global svmbols, and several
PROMSYM-BAT | (¢ ribols defined by the linker specification file, This listing is
useful in determining how variables have been declared and in
finding the absolute addresses of symbols. It can be printed
by use of the batch file promout.bat.

This batch file should be used before using any of the follow-
ing:

1. list.bat
2. asmlist.bat

. printall.b
READY-. 3, printall.bat

OUT.BAT 4. promsym.bat
5. loadmap.bat

Its purpose is to empty the temporary files \temp\temp and
\temp\print prior to their being used by those other batch files.
Once used, vou need not use it again unless vou have already
printed the contents of the temporary file and need it no lon-
ger, or unless vou wish to discard it for some other reason.

C. PROGRAM MAINTENANCE
This section describes how to compile a new version of the controller program: and
how to get an executable version of that program into an EPROM. A basic familiarity
with Microsoft MS DOS is assumed. The file organization is described in APPENDIX
D. HIERARCHICAL ORGANIZATION OF SOFTWARE FILES on page 88.
I. Procedures for Generating a New Executable Program
a. Compile the C source files
For each source code file written in the C language, type ¢ < filename > .c.
b. Assemble the Assembly Code Source Files
For each source code file written in Z-80 assembly language, type
asm < filename > .s.
¢. Link Modules Together
Enter the command promlink. This links all executable modules together,
generating an executable program module in file vibro.bin in subdirectory \vibro\contrlr,

which becomes the current directory upon completion.

145

Table 13, CONTENTS OF SUBDIRECTORY \VIBRO\CONTRLR\CSOURCE

File Contents
. Contains programs which operate the bubble memory module
BUBBLE.C on the controller board.
Contains programs which operate the real time clock on the
CLOCK.C controller board.
- Contains programs which perform conversion of data from one
CONVERT.C format to another.
Contains programs which are specially designed for use with
EXPMNT.C the Vibro-accustic Experiment. Thev are not usable by other
applications, although they might be tailored to them.
FPUTC.C Contains the routine fpute().
Contains the declarations of the few variables which are de-
GLOBAL.C clared with global scope (i.e., which are known to all subrou-
tnes).
INITIAL.C Contains programs which initialize both NSCS810A
) o RAM-I"O-Timer chips on the controller board.
INOUT.C Contains programs which handle input from and output to any
: ' device.
Contains the highest level of programs which operate the con-
MAIN.C troller, including the C subroutine main(). These include most
e of the menu-driven routines which are executed if there is a
terminal attached to the controller when it receives power.
Contains programs which operate the electrical power relay
POWER.C board in the controller. This board supplies power to various
hardware subsystems.

2. Getting the Executable Program into EPROM
a. Copy the Exccutable Program to a Diskette

Place a 5 1/4 inch diskette in drive B. Then enter the command copy

vibro.hex b:. This puts a copy of the file vibro.hex on the diskette. This file contains a

hexadecimal format of the code which, when loaded into an EPROM, will allow the

controller to function.

b. Prepare to Write EPROMs
We have acquired the Intel program PCPP PC Personal Programmer to
load data into EPROMs. Take the diskette to the IBM Personal Computer (PC) with
the EPROM programmer. This PC is located in Space Lab #2, Room 102, Bullard Hall,
Naval Postgraduate School. Be sure yvou have enough EPROMS available.

146

Table 14. CONTENTS OF SUBDIRECTORY
\VIBRO\CONTRLR\ASMSOURC

File Contents

This file contains the routines bubread(), bubwrite() and bubx-
fer(). These routines had to be written in assembly language
BUBRW.S because the compiled code would not execute fast enough cor-
' rectly to perform data transfers with the bubble memory con-
troller. Each routine looks just like a C language subroutine
to the calling routine.

This file contains a delay routine written in Z-80 assembly
DELAY.S code, but it can be called as if it were a C language subroutine.
’ Its purpose is to provide delays in multiples of 10 ms in situ-
ations where the hardware requires it.

This is a routine supplied with the UNIWARE C compiler. Its
MBRK.S purpose is to allow C programs to request memory through the
’ ‘ standard allocation routines malloc() and calloc()

[Ref. 17: Compiler section. pp. 30-51}.

This file contains the two routines input() and output(). Thev
are written in Z-80 assembly code, but thev can be called as if
NEWIO.S theyv were C language subroutines. Theyv provide the ability to
read characters from and write characters to anyv valid port
address.

This file contains the Z-80 initialization code, such as an ad-
dress where execution should begin, interrupt vectors, code for
START.S initializing RAM, and a call to the main() program. located in
the C source file vibro.c. It is adapted from code provided by
UNIWARE.

To ensure they are empty, place them in the EPROM eraser and turn on the
fluorescent light to erase their contents. While this is going on, and once the PC is
booted up, enter the command cd pepp at the command line. This will make pcpp the
current subdirectory, and so the program pcpplod can be issued to initialize the program
which will write the file vibro.hex into the EPROMs. Once this has been done, enter the
command ipps channel(3), which actually invokes PCPP.

PCPP now has control. Enter the following commands:

t 2764 This command allows 2764 EPROMs to be used.

i80 This specifies that INTEL 8080 hex format files are being used.
This is the format of the program in the file vibro.hex.

147

Table 15. CONTENTS OF SUBDIRECTORY \VIBRO\CONTRLR\HEADERS

File Contents

BUBBLE.H This file contains the extern declarations of the routines in
bubble.c.

BUBRW.H This f_'1le contains the extern declarations of the routines in
bubnrw.s.

CLOCK.H Th:s’ﬁle contains the extern declarations of the routines in
clock.c.

. This file contains the extern declarations of the routines in

CONVERT.H convert.c.

DELAY.H l?;xz file contains the extern declarations of the routines in de-

EXPMNT.H This file contains the extern declarations of the routines in
expmnt.c.

GLOBAL.H This file contains the extern declarations of the variables in
global.c.

INITIAL.H ;ri;lllscme contains the extern declarations of the routine in ini-

INOUT.H xltischle contains the extern declarations of the routines in in-

VIAIN H Th{s file contains the extern declarations of the routines in
main.c.

NEWIO.H Thi;_ file contains the extern declarations of the routines in
newio.s.

POWER.H Th1§ file contains the extern declarations of the routines in
power.c.
This file contains definitions of all constants used by the C

VIBRO.H routines. It also contains definitions of global structures used
throughout.

b This performs a check to ensure the EPROM currently loaded in

the socket is blank. It should be obvious that a blank EPROM
must be inserted in the slot before performing this check.

c:vibro.hex (0000,1fff) t p
c:vibro.hex (2000,3fff) t p
c:vibro.hex (4000,5fff) t p
c:vibro.hex (6000,6¢c23) t p
c:vibro.hex (e000,e127) t p (0c24)

148

The last five commands copy the program instructions from the diskette into the EP-
ROM. The numbers in parentheses are the addresses which are to be loaded into each
EPROM. A new EPROM should be inserted into the socket prior to executing each of
the first four commands. The number 0x6c23 in the fourth command is one less than
the number RAMDATA in the symbol table. The number 0el27 is one less than the
value of ZRAM in the symbol table. The number 0x0c24 is 0x6000 less than the number
RAMDATA in the symbol table. This number tells the PCPP program where in the fi-
nal EPROM to begin writing this section of data. Since the EPROM addresses all are
in the range [0x0000,0x1fff], subtracting 0x6000 from the actual starting address is nec-
essary to get the address into the proper range. Note that the last command causes the
data which eventually will be placed in RAM to be loaded at the end of all the data
which is to remain in EPROM locations. It is conceivable that this information would
not fit onto the end of a single EPROM but might spill across the end and require an-
other EPROM. This would require modifving the instruction sequence shown above.
For details, consult [Ref. 20]. The command exit will terminate the operation of the
PCPP program.

This completes the loading of the control program into EPROM. The EP-
ROMs can now be loaded into the controller for testing.

149

APPENDIX H. CONTROL PROGRAM SOURCE CODE
A. FILENAME SPEC

/ FHHHHHHHEHHHHHHEHHHHHREBHHHHEHEHHEHHEHHHHHHHHHHHEHOOHHHEHEHHHHEHHHEHEHHEUEE
Specification file for the Controller hardware. Also see
companion files "start.ssm" and "mbrk.asm". This specification
assumes 32K of ROM at address 0x0000, and 8K of RAM at address 0xe000.
FHHHEHHEHHHHEHHHHHHHHHHHHHEHEHHHHHHHHHHHHHEHBHEHHHHHHHOHHEHHHHOHHERHEH0E /
partition {
overlay {
region ()} reset l(addr = 0]y /% reset vector %/
region {)} code, const, string) /% other ROM »/
RAMDATA = §) /% ROM to initialize region ram ¥/
7/ Fe 636 36 36 336 J6 T6- 36 J I8 36 26 IETE IE 36 I3 636 I F-I6I6IE FHI-IE FEIE 26 96 3676 I6 3603636 36 I3 9636 36 3¢ 2 I 63696
Region ram is initialized at runtime startup by
copying data from RAMDATA to IRAM. The data must
actually be linked to its RAM address (IRAM) to get
correct variable addresses, but must be
programmed into ROM here. By hand, you must
ensure that ENDODATA <= ENDROM. (ENDDATA is below)
FEJ6 266 6 I I6 JETEIE 6 26 36 I6 6 36 J6 6 I I I6 T T IEI6 I 3¢ J6I6I6 6 I6IEIEIE 26 36 I 3696 JI6 I EIHHE I I6 26 I 36 36 3¢/

ENDROM = 0x8000; /% end of ROM */

IRAM = 0xe000} /% RAM starts here. »/

region ()} data [addr=0xe00013 /% RAM to be initialized on reset »/
IRAMSZ = $§ - IRAMj /% & bytes to copy from RAMDATA »/

ENDDATA = RAMDATA + ($ - IRAM); /% compare this against ENDROM %/

ZRAM = $3 /% Pointer 1o start of ram region. »/
region {) ram; /% RAM to be zerced on reset %/
ZRAMSZ = ¢ - ZRAM; /% 8§ bytes to zero on reset %/

MRAM = ¢y

region () mbrkram(sizez0x250)) /% RAM available to malloc(} »/
MRAMSZ = ¢ - MRAM;

region () stack [sizes0x5001; /% gtack of at least Ox500 bytesw/
STACKTOP =0x100003 /% gtack pointer reset value »/

) o3
) p l3ize=0x100001])

B. FILENAME VERSION.H

extern void version(void))

150

C. FILENAME VERSION.C

void versiontvoid);

ZHHRHHHEHHHEHHHEHHHHHHHOHHHHHHHBHHHEHEHHHHHHHHEEHHEHHHHEHHHHROHRHEHHEHHEEHE
void version(void)
<

printf(
“m.rControl program for the Space Shuttle Vibro-acoustic Experiment.n.ri
Version 6.19 April 14, 198%nr"))
)

D. FILENAME VIBRO.H

/% vibro.h #/

#define TRUE Oxff

8define FALSE 0x00

#tdefine EXPERIMENTOK OX1l /% As a parameter to menui), this true flag
permits the experiment to be run. %/

sdefine SELECT Ox1 /% Select appropriate power relay. %/
#define ASCII o /% Used as a parameter to showbubbuff(). %/
#define HEX 1 /% Used as a parameter to showbubbuff(). »/

#define NULL 0x00 /% The following are ASCII definitions. %/
#define BELL 0x07
#define BS 0x08
#dafine CTRLS ox13 /% Permits output to be halted and restarted. #/
#define CTRLY 0oxl9 /% Permits the menul) program to be entered
recursively anytime console I/0 takes place.
Only one recursive call at a time is supported. %/
#define SPACE 0x20
#define DELETE Ox7f

#define STANDBY 0x01 /% These are masks for the SSDR commands and. %/
sdefine SWEEP 0x02 /% status codes. %/

- #define SCROLL 0x04%

fdefine LAUNCH 0x08

#define RECORD 0x10

#define PLAYBACK 0x20

#define OPCOMP 0x%0

fdefine NORMOP 0x80

Sdefine TRIES 3 /% Number of times to try something before giving wp. %/

fdefine BLOCKS_PER_PAGE 2
/% Tha ramber of deta blocks per page
of bubble memory. %/
#define RECORD_DELAY 12 /% The number of hours to wait sfter initiating
RECORD mode before daring to restart it. #/

/% The following constants are used by the routine adtoint() to convert

valuss read by the A/D converter into the corresponding real-world units. »/
fdefine MULT_TEMP 1960784L /% UK per unit on the A/D converter. #/

151

Rdefine MULT_10V 4862745L /% 10E-2V per unit on the A/D conwverter. %/
Rdefine MULT_20V 9725490L /% 10E-2V per unit on tha A/D converter. ¥/

sdefine MIN_VOLTAGE_10 850 /% 8.50 V is the minimum permissible
voltage on the 10V bus. The constant
represents this in units of 1lE-2 V. »/

Sdefine MIN_OPERATING_TEMP 283 /» The bubble memories should not be operated
if the temperature falls below 10 degrees C
or 283 K. %/

#define MIN_DESIRABLE_TEMP 285 /n The heaters should be on if the temperature
is below 285 K. %/

¥define MAX_DESIRABLE_TEMP 287 /» The heaters should be off if the tesperature

is above 287 K. »/

8define BUBDATA 0x40 /% 1/0 port for the controller's bubble memory. #/
#define BUBCTRL 0x4l /% Control and status port for the BMC. %/

/% The following codes are commands to the bubble memory controller. %/
#define BABORT ox19

#define BINIT 0Ox11l

#define BFIFORESET 0x1D

f#idefine BWRBLREG Ox16 /7% Nrite boot loop register. »/

#define BREAD 0x12

#define BWRITE 0x13

#define BLDPARM 0x0b /% Load parametric registers. %/

#define BTRIES 30000 /% Bubble commands should be written this =/

/% many times before giving up in disgust. »/

/% The following are bubble memory controller status codes. ¥/
#define BBUSY 0x80
#define BOPCOMPLETE Ox40

#defing BFAIL 0x20

#define BTIMING 0x02

#define BFIFO 0x01

#define BBUSYBIT 7 /% These constants specify which bit in the %/
#define BOPCOMPLETEBIT 6 /% BMC status bit is used for which purpose. %/
#define BFAILBIT 5

#define BFIFOBIT 0

fdefine BNEVER_READY 0

Sdefine BXFER_GOOD 1

#define BXFER_BAD 2

8define PAGELENGTH 6% /% The number of bytes in a page of bubble memory.

Sdefine MAXPAGE 68191 /% Greatest valid bubble memory pege rmumber. »/

Sdefine ADPOINTS 10 /% The mmber of amalog quantities to be converted to
decimel. w/

8define STRLEN 7 /% Number of characters to allow for integer
charscters, including a null terminator. w/

Sdefine HSTRLEN 2 /% Number of characters to allow for hexadecimel
characters®/

fdefine HEXINTSTRLEN & /% Number of charscters in a hexadecimal word. %/
Sdefine DUMPNIDTH 16 /% Number of bytes in a line of a memory cump. %/

152

»/

/% Bit definitions for port C of NSC810 #1. (Base address is 0x00.)
Bit & MEANING

5 Spare output.
4 Power strobe output (Active high).
3 One if no terminal is connected to the RS-232C port.
° Zero if a terminal is cornected.
2 Barometric pressurs drop detection after launch
tactive high).
1 Vibration detection at launchlactive highl.
*] Matched filter detection of Auxiliary Power Unit (APU)

prior to launch (active high).

»/

#define TERMON 0x08 /% Points to the terminal comnection line in NSC810 #1,
Port C, Pin 3. It is zero when the terminal is
connected.»/

#idefine BARO_ON 0x04 /% Barometric pressure drop line. ®*/

#define VIB_LON 0x02 /% Vibration detection line. #/

#define APU_ON Ox01 /% APU detection line. %/

/% Bit definitions for port C of NSC810 #2. (Base address is 0x20.)

Bit 8 Meaning

5 RESET* line for the bubble memory. This line should be
Zero whenever power is applied to or removed from the
bubble menory. It is one normally. The purpose of
making it zero during power switching is to avoid havin
to meet the strict requirements for power rise and fall
tims which would be necessary otherwise.

G Power line for the bubble memory. This line is a one
to apply powers a zero to remove it.
3 End of analog to digital conversion. (Active high?)
- 2 Spare input.
1 Spare input.
0 Heater control output (active high).

»/
#define READC1 0x02 /% Points to the NSC810 %1, Port C, R/W register. #/
#define BCLRC1 Ox0a /% Points to the NSC810 #1, Port C, Clear register. ¥/
f#tdefine BSETC1 OxOe /% Points to the NSC810 #1, Port C, Set register. »/
#define BCLRC2 Ox2a /% Points to the NSC810 #2, Port C, Clear register. %/
#define BSETC2 Ox2e /% Points to the NSC810 #2, Port C, Set register. »/
#define PWRSTROBE 0x10 /% Points to the power board relay strobing line. To
turn on a peripheral, you must strobe this line high
for PWRDELAY * 10 ms. This line is NSC810 #1,
Port C, Pin 4, w/

/% These are port addresses for the A/D converter. Character strings which
identifiy these are defined in file "global.c". Be sure that changas
in one place are matched in the other. W/

f#define VOLTO 0x80 /% Voltage from +20 V bus. %/
fdefine VOLT1 0x81 /% Voltage from -20 V bus. ®/
#define VOLT2 ox82 /% Voltage from ¢10 V bus. #*/
#define TEMPO 0x83 /% Temperature from shelf above BMC. %/
. Sdefine TEMP1 0x84% /% Temperature from underside of speaker. #/
8define TEMP2 0x85 /% Temperature from shelf above battery. #/
%define TEMP3 0x86 /% Temperature from batteries. #/
Sdefine TEMPG ox87 /7% Temparature from controller’'s backplane. #/
- fdefine TEMPS 0x88 /% Temperature from card 8 of BMC. »/
tdefine TEMP6 0x89 /% Temperature from card 9 of S8MC. ®/
153

f#idefine

$#define

Sdefine

fdefine

fdefine
#define
#define
#define
#define
#defire
8define
#define
#define
#define
#define
$#idefine
#define
#idefine
#define
#define

#define
ftdefine

t#define

#define

PWRDELAY 2 /% The number of 10 ms units that the power board
strobe should be applied to turn on a relay. »/

BUBRST 0x20 /% Points to the RESET* line in NSC810 #2, Port C, -
Pin 5. »/

BUBPNR Ox10 /% Points to the bubble power line in NSC810 %2,
Port C, Pin 4. %/

BUBDELAY 5 /% Number of 10 ms units to wait when operating the .
bubble memory. %/

MDR1 0x07 /% See the documentation for » description of the #/

DDRALl 0x04 /% use of these ports. »/

DORB1 0x05

DORC1 0x06

TMO1 0x18

TOoLBl 0Ox10

TOHB1 oX11

STARTO1 Ox1S

MDR2 0x27

DDRA2 0x2%

DDRB2 0x25

DDRC2 0x26

TMO02 0x38

ToLB2 0x30

TOHB2 Ox31

STARTO02 Ox35

PRTDATA OxcO /% Port number for data from RS-232C interface. ¥/

PRTCTRL Oxel /% Port rwumber for control information from RS-232C -
interface. */

PRTOUTRDY Ox01 /% Bit zero of the PRTCTRL byte is a orne if the printer
is ready to accept data and zero otherwise. »/

PRTRDY 0x02 /% Bit one of the PRTCTRL byte is a one if there is -

data to be read and zero otherwise. %/

/% Bit meanings for the power status byte at address POMERIN.

Bit & Meaning
5 1 if heater circuit is off; 0 if it's on.
4 1 if matched filter (APU detection) circuit is offy
0 if it's on.
3 1 if analog to digital converter (A/D) circuit is off
0 if it's on.
2 1 if voltage controlled oscillator (VCO) is off)
0 if it's on.
1 1l if solid state data recorder (SSOR) is off
0 if it's on.

The same bit assigrments apply to the power command byte at address POWEROUT,
but the bits have a different meaning. A one in bits 1-5 is used to select the
corresponding relay. A zero is used to cause that relay to be ignored.

A one in bit zero causes the selected relays to be switched on. A zero in

bit zero causes the selected relays to be switched off.

"/

Sdefine PHR_RELAYS 1) /% The rumber of power relay switches. #/ -
ftdefine POWEROUT 0x01 /% Port address for power control board commands. %/

154

#define POMERIN 0x21 /% Port address for power control board status. »/

%define SSDROUT 0x00 /% Port address for SSOR commands. %/

#define SSDRIN 0X01 /% Port address for SSDR status. »/

#define SSODROFF 0x02 /% The following are commands for applying or removing®/
#define SSDRON 0x03 /% power.®/

#define VCOOFF 0x0%

#define VCOON 0x05

#define ADOFF 0x08

#define ADON 0x09

Rdefine MATFOFF 0x10

#define MATFON 0x1l

f#idefine HEATOFF 0x20

Bdefine HEATON 0x21

fidefine ONBIT 0x01 /% The lowermost bit of a power command is 1 to turn
power on, 0 to turn it off. »/

#define NOPOWER O0xCl /% Magk for upper 2 bits and bit 0 in power. These
bits have no meaning when you examine the power
board's status.»/

/% These are aevent codes used for logging events. »/
/% Dont' alter these codes without adjusting show_eventl) accordingly. */
/% A prefic C means COMMAND ISSUED.

A prefix CF means COMMAND FAILED.

A prefix CS means COMMAND SUCCEEDED.

A prefix D means SOMETHING WAS DETECTED OR DONE. */
#define INITIALIZE 0 /% Start with aplomb. */
#define CSHEEP 1 /% SSDR was commanded to enter SWEEP mode. ¥/
f#define CSSWEEP 2 /% SSDR accepted a SWEEP command. »*/
#define CFSWEEP 3 /% SSDR wouldn't accept a SWEEP command. %/
tdefine DSWEEP G4 /% The sweep was completed successfully. »/
$define DAPUON 5 /% The auxiliary power unit was detected ON. ®/
#define CSCROLL 6 /% SSDR was commanded to enter SCROLL mode. */
#define CSSCROLL 7 /% SSDR accepted a SWEEP command. %/
#define CFSCROLL 8 /% SSDR wouldn't accept a SCROLL command. %/
#define DLAUNCH 9 /% A launch was detected. */
#define CLAUNCH 10 /% SSDR was commanded to enter LAUNCH mode. %/
#define CSLAUNCH 11 /% SSDR accepted a LAUNCH command. »/
fdefine CFLAUNCH 12 /% SSDR wouldn't accept a LAUNCH command. ®/
8define DPRESSURE 13 /% The pressure switch detected a pressure drop.%/
#idefine DNOOPCOMP 14 /» SSDR didn't report completion in the

allotted time. »/

#define DOPCOMP 15 /% SSDR completed its SWEEP or LAUNCH mode. */
Sdefine DABORT 16 /% Ne think the mission was aborted. ¥/
Sdefine CONSSODR 17 /% The SSDR power on command was issued. »/

8define CSONSSDR 18 /% The SSDR power on command succeeded. %/
Sdefine CFONSSDR 19 /% The SSDR power on commend failed. »*/

8define COFFSSDR 20 /% The SSOR power off command wes issued. »/
#define CSOFFSSDR 21 /% The SSOR powsr off command succeeded. ¥/
8define CFOFFSSDR 22 /» Tha SSDR power off command failed. ®*/
Sdefine COFFVCO 23 /% The VCO power off command wes issued. %/
8define CSOFFVCO 24 /% The VCO power off command succeeded. ¥/
fdefine CFOFFVCO 25 /% The VCO power off commend failed. »/

Sdefinae CONVCO 26 /% The VCO power on command was issued. ¥/
Sdefine CSONVCO 27 /% The VCO power on commend succeeded. ¥*/
#define CFONVCO 28 /% The VCO power on command failed. »/
Sdefine COFFAD 29 /% The AD power off command was issued. »/
Sdefine CSOFFAD 30 /% The AD power off command succeeded. %/

155

#define
#define
#define
$define
$define
#define
#define
$idefine
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

#define

#define
#define

CFOFFAD
CONAD
CSONAD
CFONAD
COFFMATF
CSOFFMATF
CFOFFMATF
CONMATF
CSONMATF 39
CFONMATF 40
COFFHEAT
CSOFFHEAT
CFOFFHEAT
CONHEAT
CSONHEAT 45
CFONHEAT 46
READAD
TERMINATE
DUSERNOAPU

CSRECORD 52

3
32
33
34
35
36
37
38

V4]
/7%
/%
/%
7%
/%
/%
/7%

/7% The
/% The

4l
42
43
4%

Vs]
/%
/%
/%

7% The
7% The

47
48
49

/%
/%

The
The
The
The
The
The
The
The

AD powaer off command failed. %/

AD power on command was issued. »/
AD power on command succeeded. */

AD power on command failed. %/

MATF power off command was issued. */
MATF power off command succeeded. */
MATF power off command failed. »/
MATF power on command was issued. ®/

MATF power on command succeeded. ¥/
MATF power on command failed. %/

The
The
The
The

HEAT power off command was issued. »/
HEAT power off command succeeded. ®/
HEAT power off command failed. %/

HEAT power on command was issued. %/

HEAT power on command succeeded. »/

HEAT power on command failed. */

We read the A/D's. %/

Finish gracefully. %/

/% Tha user terminated the wait for the APUs. »*/
INVALIDCOMMAND 50 /% Th.s code is regarded as invalid, and should
never occur. It is provided to help in
debugging the software. %/

PRIORLAUNCH 51 /% If power is restored after the launch has already
begun, then this mission status is assigned. %/

/% The RECORD mode command succeeded. %/
CFRECORD 53 /% The RECORD mode command failed. */

/% Various constants used for setting the parametric registers. %/

#dafine BBLKLNM 0x10
$#define BBLKLNL 0x01l
#define BMBMSEL 0x00
#define BENREG 0x20
#Bdefine THOUSANDTHS 0xé0
#dafine HUNDREDTHS 0Ox61
Rdefine SECONDS Ox62
fdefine MINUTES Ox63
#define HOURS Ox6%
Bdefine WEEKDAY Ox65
f#idefine DATE 0x66
#define MONTH oxée7
struct datetime

char monthy

cher dates

char hours

char minute)

char second)

char hundredths s

char thousandths)
b1}
struct idatetime ¢

int imonth)

int idate)

/%
/%
/%
/%

V4]

/%

/%

/%
/%
/%
/%

/%

Block length register MSB. 64 bytes/page. %/
Block length register LSB. 1 page/transfer. */
Bubble memory select (MBM). Only 1 module
connected. */

Enable register. Polling mode. ¥/

The ports for reading the date and time. %/

This structure contains binary coded »/
decimal data as defined for the National »/
Semiconductor MM58167A Microprocassor %/
Real Time Clock. »/

This structure contains the same %/
information as the datetime structure, butw/
in integer format. clockint() takes care #/

156

int ihours /% of converting from BCD to integer format. »/
int iminutes
int isecond;
int ihundredthss
int ithousandths}
.)3

/% This structure describes the uses of the bits in the power relay control

port. »/
. struct power_port_fmt (
char : 23 /% Upper two bits are not used. »/
char heater:1}) /% Bit 5 - designates the heater circuit. »/
char matched_filter:1s /% Bit 6 - designates the matched filter. %/
char a_to_d:1) /% Bit 3 - designates the A/D circuit. w/
char veo:l} /% Bit 2 ~ designates the VCO. %/
char ssdr:1s /% Bit 1 - designates the SSDR. #/
char relays_on:1lj /% Bit 0 - 1 to turn relays on,

0 otherwise. »*/
)3

/% This structure describes data stored in page zero of the controller's
bubble memory. %/
struct pageQdata (/% A template for data in page zero of the
controller's bubble memory. %/
char sweepstarted); /% FALSE if sweep not yet begun.
TRUE if sweep has been started once. ¥/
char launchdone; /% FALSE if launch has not yet ' »n detected.
TRUE if launch has been uelected. %/

int pages /% Number of next page available for
log data.»/
char halfpage; /% 0 i€ top half of next available page is

empty, 1 otherwise. */
char full_experiment; /% TRUE if the full experiment is to be performed,
FALSE otherwise. %/

- /% He need to record the date and time when RECORD
mode was last initiated if we are not performing
the full experiment. */

struct datetime RECORD_start_times

)}
/# This structure describes data stored in every block of a page in

the controller's
bubble memory, with the exception of page zero. %/

struct log data ¢ /% A template for logged data. %/
struct datetime clock} /% Time and date of recorded data. #/
char event) /% A coded event. See #define section for
codes. %/
char atod[ADPOINTS]s /% Coded A/D readings. Codes not yet defined. %/
»
. /% This structure has BLOCKS_PER_PAGE log_data structures in it. =/

struct full_log page
struct log_data half_page(BLOCKS_PER_PAGE]}

H

orwm pwr_cmd_modifiers (/% These codes can be given to cmdlog() for »/

issued s 0, /% processing. Thay show whether a power relay
succeeded =1, /% command was merely issued, or succeeded or */
failed z 2 /% failed.

X}

E. FILENAME BUBBLE.H

/% This file contains global prototype declarations for the functions in

“bubble.c".

extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern

void
void
char
char
void
char
void
char
void
void
void

"/

bpagesettint page);

bubemdmenutvoid)s

bubinit(void))

bubiolchar command,int page,char ¥buffer))
bubmenu(void)s

bub_onl{void)};

bub_offlvoid)s;

issububcemd{char command);s
rdstatregl(void)

showbubbuff(char bufferl l,char mode);
testpatternichar bufferl 1)

F. FILENAME BUBBLE.C

/% bubble.c ®/

$include
#include
ginclude
ginclude
#include
#include
#include
#include

“bubrw.h"
"vibro.h"
“convert.h"
“expmnt . h"
“inout.h"
“"delay.h"
“mewio . h"
"“global.h"

void bpageset(int page)s

void bubcmdmenulvoid)s

char bubinit{void);

char bubiol(char command,int page,char *buffer))
void bubmenulvoid)s

char bub_on(void);
void bub_offlvoid))

char issububend(char command))
void rdstatreglvoid)s

void showbubbuffichar bufferl],char mode)s /% display the bubble buffer. w/
void testpattern(char bufferl 1);

/% turn on power to the bubble card
/% turn off the power to the bubble card %/

/% gsats whole bubble

»/

»/

buffer to character of users choice®/

/IBHBHHHHHHHHHHHEHHHHHHHHHHHHHHHBHEHHHHHHHHHHHHREHHHHHHEHHHHHHHHHHEHHHOHHHEHE /

/% See the bubble memory marmual regerding the setting of the parametric

158

registers, which is what this function does. %/

void bpageset(int page)

{

output{BUBCTRL,BLDPARM); /% signal to BMC next 5 bytes to data port

are for parametric registers */
ocutput(BUBDATA,0xCl) /% one page to transfer BLR_LSB »*/
output(BUBDATA,0x10)}3 /% one FSA channel BLR_MSB %/
output{BUBDATA,0x201}) /% Enable register-enable read corrected data %/
/% Mask off lower byte of page number. %/
ocutput(BUBDATA ,page & Ox00ff))
/% Mask off higher byte of page rmumber, with a zero MBM. %/
output{BUBDATA,(page >> 8) & 0x001f))

/PN I NI I NI I I I SN NI JEI I I I I I M I/
/% Select from a menu, and issue, a command to the bubble memory. %/
void bubcmdmenulvoid)

{

A
E
Z

char datas
static int command(] = ¢
BABORT, BLDPARM, BINIT, BFIFORESET,
NULL, BWRBLREG
)
while (TRUE)(
printf("Select a command to be issued to the bubble memory: nr
Abort B Load parametric registers C Initialize D FIFO Resetnr
Transfer 40 bytes of Oxff. F Write bootloop registernr
Return to previous menu. nr")j;
data = tolower(termini))}
printf("Zcn r",data)s

if (data == '2') return;

/% Issue bubble transfer command. */
if (data == '@') {
if (bubxfer())
printf("Transfer succeeded. nr")}
else
printf("Transfer failed. nr")y
continue;

/% Initialize parametric registers for page zero %/
if (data == 'b') (

bpagesat(0)}}

continue;

/% Check for other valid responses %/

if (data < 'a' || data > '$§') (
printf{"Use a valid letter please. nr")
continue)

)

/% Issue the command indexed by the letter #/

if (issububemd(icommandidata-'a'l))
printf("Command succeeded. nr"))

159

else
printf(“Command failed. nr")y

/TR NN I I I I I NI I NI H I N3¢/

/% This routine initializes the controller card's bubble memory.
Return FALSE if unsuccessful; TRUE otherwise.
After power is applied to the bubble memory, call this routine.

It implements the flow chart on pp. %4.9-4.9b in BPK 5V75A Protyping Kit

User's Maual from Intel. */
char bubinit(void)

{
/% Clear the bubble memory registers. »/
if ('issububemd{BABORT)) (
printf({ "ABORT command failed. nr");
returnt FALSE)3
b
delay(BUBDELAY)} /% Delay BUBDELAY % 10 ms »/
bpageset(0); /% Load the parametric registers of
the bubble memory. %/
if (Yissububcmd(BINIT)) (/% Initialize bubble memory for use. ®*/
printf("INITIALIZE command failed. nr*)
return! FALSE),
}
if (Yissububemd(BFIFORESET)) { /% Reset FIFO buffer. %/
printf(“FIFO RESET command failed in bubinitt). nr")y
returnt FALSE)3
)
if ('bubxfert)) (/% Hrite 40 Oxff characters to the
bubble memory controller. »/
printf("40 byte transfer failed. Status: ")
rdstatregl };
returnt FALSE)}
}
if (Yissububemd(BHWRBLREG)) /% Put boot loop memory map into BMC. »/
return(FALSE)3
return(TRUE }3 /% If you got this far, everything
worked. »/
}

£/ FETETETEIE 6T I I T IE 26 J6 36 9606 JEIEDEIEIEIE JEIEIE JETE 6 36 2636 J6-06 36-IE-I6 J636-J6 J-06 J6 396 36 36 3636 36 36 36 J6 363698 I JE 36 JEIE I 36 4 3¢ I/

/% Paerform normal input from or output to the bubble memory
controller. »/
char bubiol(char command,int page,char »buffer)
/% “command’ can be BREAD to read; BWRITE to write. %/
/% "page" is a bubble memory page number, from 0 to 8192. »/
/% "buffer” is 8 pointer to a buffer of length PAGELENGTH. %/

int j» /=% Counters. w/
/% Do not operate the bubble memory if the temperature is below
MIN_OPERATING_TEMP. %/

if fcolder_thantMIN_OPERATING_TEMP))
return(FALSE)y

160

/%

7/ P IEIEIE T J6 T I I 3 F I 36 36 6 I6 F T 36 I T 3 26 FEIEIEIE T 6 HI6 I6 I T I 36 36 36 I I I JE 6 3636 36 36 96 36 3 I6 I 36 I 36 96 3636 6 I6 36 96 36 96 36 36 3 36 36 3 3 3 3¢ /

bub_ont)y

if (tbhubinit())
bub_offl)
return(FALSE)}

}

bpageset(page)s /* Set parametric registers for the desired page.

if (command == BREAD) (
bubread(buffer)s
} else if (command == BWRITE)
bubwrite(buffer)s
}
/% Hait for the BMC to finish emptying the FIFO buffer and return
OPCOMPLETE. »/
for (j=03j<BTRIES;++j) (
if (input(BUBCTRL) & BOPCOMPLETE)

break}
}
if (3 >= BTRIES) (
bub_off(13
printf("Couldn't get an OPCOMPLETE from BMC. Status: ")
rdstatreg()}
return(FALSE)}
)
bub_off()
printf("OPCOMPLETE received from BMC. nr")y »/
return(TRUE)} /7% 1f you got this far, the 1/0 worked! »/

void bubmenulvoid)

{

vA
B
c

NLCHNXOTMTMO

char datas
static char successl] = {
"Bubble was successfully initialized in bubmemu(). nr"
3y
static char failurell = (
"8ubble couldn't be initialized in bubmenut). n r"
bR}
while (TRUE) (
printf(
Turn bubble memcory power on. nr
Turn bubble memory power off. nr
Initialize bubble memory for use (fully automaticlnr
8e sure to turn the bubble memory power on, first.nnr
Issue one of a menu of commands to the bubble memory..n.r
Enter data from keyboard into buffer. nr
Show buffer contents in ASCII format. nr|
Show buffer contents in hexadecimal format.:nr\
Copy buffer contents to bubble memory (write bubble memory). nr.
Copy contents of bubble memory to buffer (read bubble memory)..nr
Display contents of bubble memory status register. nr
Return to previous menu. nr")j

data 2 tolower(termint });

printf("/Zcnr',data)y
switchidata){

161

»/

case 'a8':
bub_ont)3
break})
case 'b':
bub_off()}
breaks
case ‘c':
if (bubinit())
printf(success)s
else
printfi failurei)
break)
case ‘'d':
bubcmdmenu()3
breaks
case 'e’:
testpattern(tempbuffer))
break)
case 'f':
showbubbuff(tempbuffer,ASCII);
break s
case 'g':
showbubbuf f(tempbuffer ,HEX);
break}
case 'h':
if (1bubio(BWRITE ;getpagencol), tempbuffer))
printf("Write Failed. ner")y
break}
case 'i':
if ('bubio(BREAD,getpagencl), tempbuffer))
printf("Read Failed. ne");
breaks
case 'j':
rdstatregt);
break)
case 'z2': case 'Z':
return;
default:
printf{"Use a valid letter, please. nr")y

/T HEHEHHEHHHHHROHHEHHHEHEHEHEEHEHEHHEHHHHHHHHHHEHHHHEHHHHHHEHHHEE /
char bub_on(void) /% turn on power to the bubble card ¥/
<
output(BCLRC2,BUBRST)3 /% Apply a reset to the bubble memory.®/
output(BSETC2,BUBPWNR)} /7% Apply power to the bubble memory.®/
/% The following delays could be 100 ms (according to the bubble
documentation) but did not work, 20 we used 300 ms. ®/

delay(BUBDELAY)3 /% Mait BUBDELAY % 10 ms for a response. %/
output(BSETC2,BUBRST)3 /% Remove reset signal. »/
delay(BUBDELAY)} /% Wait BUBDELAY # 10 ms for a response. %/
)
162

£ F O HEHHHHHHRHHHORHEHOHHOREHOEHE/
void bub_offlvoid) /% turn off the power to the bubble card %/

¢

issububcmd(BABORT)3 /% Issue the “abort" command to the bubblae card. %/
output(BCLRCZ,BUBRST)} /% Apply a reset signal to the bubble memory
before switching the power off. »/
dalay(BUBDELAY)} /% Pait BUBDELAY % 10 ms for a response. %/
output(BCLRC2,BUBPHR)} /% Remove power from the bubble memory. »/

/ FHHHHEHEHEHHHHEHHEHHHHEHHHEHHOHHEHHHHEEH O HHEHEHEHEHEEE S
/% Issue a command to the bubble memory controller. ®/
char issububemd(char command)

{

int i3
char statuss
i=03 /% Initialize this so it has a valua even if BABORT

is the command, %/
/% Don't issue a command until the BUSY bit goes away. %/
if (command != BABORT) {
for (i=03i < BTRIES;+¢+¢i) {
if ((input(BUBCTRL)) & BBUSY)
breaks

)
if (i >= BTRIES) (
printf({"“8ubble controller stayed busy indefinitely in issububcmd().:

Status: ")

rdstatregt);
return(FALSE))

}

output(BUBCTRL ;command)}

/% Command is not accepted until busy bit goes to one. #/

for (1 = 031 < BTRIES;++i){

status = input(BUBCTRL);
if ((status & BBUSY) || (status & BOPCOMPLETE))
break

)

/% For all commands except RESET FIFO and WRITE BOOTLOOP REGISTERS,
you must get a BUSY bit to consider that the command was accepted.
However, an OPCOMPLETE is okay) if you get it, proceed. Note:
this is not the way the documentation says to do this. It says
you must get BUSY set first. However, that didn't seem to work. %/

if ((i >= BTRIES)

2% (command !'= BFIFORESET) &2 (command != BWRBLREG)
8% (status & BOPCOMPLETE)) ¢

printf("Bubble command Zsh was not accepted. Status: *,
ctohtcommand))3

rdstatreg())

return(FALSE)y

)

/% Hait for the OPCOMPLETE status code. %/

for (i = 03i < BTRIES)++¢iX(

if (input{BUBCTRL) & BOPCOMPLETE)
break s
)
if (i >z BTRIES) (

163

printf{ “OPCOMPLETE from BMC never occurred for command Zsh. Status:
ctohlcommand))}
rdstatregi)
return(FALSE)
} else
return{ TRUE)y
b]

/BBHHHBHEHHEBHHHEHHBHHHHHHHHHHHHEHHEHHHHHHHHEBHHEHHHHEHHHHHHHEEHHHHEHHEHHHEHE/
void rdstatregtivoid)
<

printf("Zs n r*;ctoh(input(BUBCTRL)))}

/ IHHHHEHHHHHHHHEHEEHHHHHHEHHHHHHHHHHHHEHHEHHEHHHEHEHEHEHE I HHEHEEHEEEEHHERE/
void showbubbuffichar buffer(]l,char mode) /% display the bubble buffer.
ASCII format tries to print each character as if it were a
printable ASCII character.
HEX format is the correct option to use if not all characters are
printable. %/
/% Valid values for "mode" are ASCII and HEX %/

[4
int j) /% Dump contents in an 8 by 8 array. %/
for (3=03 J<PAGELENGTH; j++) {
if (mode == ASCII)
printf("/c",bufferljll;
else (
printfl(/s ",ctohibuffer(jli)s
if ((0==(3 +1)7Z 8) 8% (jt=0))
printf(" nr");
}
)}
printf(" nrv);
}

7 SRR I I C IR IO/
void testpatternichar buffarl])

/% sats whole bubble buffer to character of users choice®/

<

char (1)
char s[STRLEN]s /% Storage for itoal). #/
int 3

/% Make sure ¢ has a valus before checking its contents.¥/
cs '0'
printft"Specify wp to /s characters to stuff into the bubble. n.r",
itoa(PAGELENGTH,s))
for (3203 3<PAGELENGTHs jo+) (
if (c = *'p') (
c = termin()}
if (c 1= “p) 7
buffer(c)
printfi*“Zc”,c))
) else
bufferlj) = '

164

) else
bufferljl = * 'y
)

printf("nr");

G. FILENAME BUBRW.H

extern char bubxfer(void)s
extern char bubread(char ¥buffer);
extern char bubwrite{char xbuffer)s

H. FILENAME BUBRW.S

3} bubrw.s
#define TRUE Oxff
#define FALSE 0x00

3 The definitions which follow are from the file "vibro contrlr headers bmc.h".
3 Since they are used by C source code; they are incompatible with assembly

3 code. Thus they are copied here and all C comments have been converted

3 to assembly language comments.

tdefine BUBDATA 0x40 3 170 port for the controller's bubble memory. %/
#define BUBCTRL Oxél 3 Control and status port for the BMC. #/

3 Tha following codes are commands to the bubble memory controller. %/
#tdefine BABORT 0x19

gdefine BINIT Ox1l

#define BFIFORESET 0x1D

ttidefine BWRBLREG Ox1é 3 Write boot loop register. ®*/

sdefine BREAD 0ox12

sdefine BWRITE Ox13

#define BLDPARM 0x0b 3y Load parametric registers. %/

#define BTRIES 30000 3 Bubble commands should be written this %/

3 many times before giving up in disgust. #*/
3y The following are bubble memory controller status codes. %/
#define BBUSY 0Ox80
#define BOPCOMPLETE Ox%0

#define BFAIL 0x20
sdefine BTIMING 0x02
#define BFIFO 0x01
sdefine BBUSYBIT 7 3 These constants specify which bit in the %/

sdefine BOPCOMPLETEBIT 6 s BMC status bit is used for which purpose. */
sdefine BFAILBIT 5
#define BFIFOBIT 0

#define BNEVER_READY 0O

#define BXFER_GOOD 1

sdefine BXFER_BAD 2

sdefine PAGELENGTH 69 3 The number of bytas in a page of bubble memory. %/
sdefine MAXPAGE 8191 } Greatest valid bubble memory page number. #*/

165

yImplement in assembly code a C routine to permit a very rapid transfer
yof forty bytes of Oxff to the bubble memory controller during its
sinitialization.
schar bubxfer(void)
[X¢

export bubxfer

region code

bubxfer:
push ix
1d ix,0) ix <«- sp
add ix,sp
sIssug a FIFO RESET command
1d a,$BFIFORESET 3 FIFO RESET command code.
out ($BUBCTRL)»a
1d de,Oxffff 3 Initialize a timeout counter.
fifors_busy: 3 See if the command was acceptaed.
in a,($BUBCTRL)
rla s Move busy bit into carry flag.
b1 cyfiforst_accepted 3 The busy bit is a 1 if the command
3 was accepted.
dec de
xor a 3 Clear register a.
or d) See if de is O.
or e
ip nZ, fifors_busy Check for busy bit again, since timeout

3

3 not yet complete.
1d a,$FALSE 3} Timed out without succeeding, so
5

i bxfer_exit return with a FALSE condition code.
fiforst_accepted:
1d b,40 3} We need to transfer 40 bytes of Oxf¥f
1d a,0xff
xfer: out { $BUBDATA) ,a
djnz xfer
in a,(SBUBCTRL)

3 The transfer succeeded if you got an Op Complete code
3 with the FIFO bit set, even with the timing bit tbit 1) set.

and $BTIMING 3 2eroize the timing bit.
cp $BOPCOMPLETE | $BFIFO 5 Do we have operation complete?
jp z,xfer_ok 3 Yes.
1d a,$FALSE 3} Unsuccessful transfer.
e bxfer_exit
xfer_ok:
1d 8,$TRUE 3} Successful transfer.
bxfer_exit:
pop ix
ret

3}

sImplement in assembly code & C routine to permit very repid input of
1a page of data from the bubble memory.
schar bubread(char wbuffer)
3 €
export bubread
import issububcmd

166

region code
bubread:
Scomment
Register usage:
a Scratch space.
bc Constant 1 for subtractions.
de Constant PAGELENGTH.
hl Constant BTRIES
be' char xbuffer.

#endcomment
push ix
1d ix,0 } ix <-- sp
add ix,sp
exx y Access alternate registers.
push be) Save be!
1d crlix+4) 3 be' <-- char *buffer
1d byl ix+5)
exx 3} Return to primary registers.
id hl,$BFIFORESET y Issue the FIFO Reset command to the BMC.
push hl
call issububemd
pop hl
cp $FALSE 3Quit if this comma, d didn‘t work.
ir nz, frok
1d a,$BXFER_BAD
ip exit
frok:
1d a,$BREAD 3y Issue the READ command to the BMC.
out { $BUBCTRL),a
1d hl,$BTRIES-1 3 Look for BUSY bit up to BTRIES times.
1d be,1 3 Used for subsequent decrements.
read_status:
in a,($BUBCTRL) 3 Gat status from BMC.
bit $BBUSYBIT,a 3y Was the command accepted?
jr nz,read } Yes, so read a block of data.
bit $BOPCOMPLETEBIYT,a 3 Not busy. Has operation complete?
3r nz,read 3} Yes,; so read a block of data.
bit $BFAILBIT,a 3} Not busy, mnot done. Failed?
jr nZ,timeoutl 3 Didn't fail. Don't know why. Allow a
3 timeout.
1d a,$BNEVER_READY s Did fail, so quit. Return function
e exit 3 complation code in register a.
timeoutl:
or a 3} Reset the CARRY flag.
sbe hl,bc 3 Have we looked for a BUSY signal BTRIES
3 times yet?
3r nc,read_status 3 No, so try again.
1d 8,$BNEVER_READY ; Yes, so we timed out. Quit and retumn
3y function completion code in register a.
b) exit
resd:
1d de,$PAGELENGTH-1 3 Prepare to read PAGELENGTH bytes from BMC.
read_byte:
1d hl,$BTRIES-1 y Prepare to check FIFO bit BTRIES times.
check_¢ifo:
in 8,{ $BUBCTRL))} Get status byte from BMC.
bit $BFIFOBIT,a y Is the FIFO bit set, i.e. FIFO ready?

167

jer
or
sbe
jr
1d
ie
getbyte:
in
@xx
1d
inc
[3%
or

sbe
ax

jr
1d
exit:
exx
pop
exx

ret

3}

nz,getbyte

»

hl,be
nc,check_¥fifo
2, $BXFER_BAD
exit

&, ($BUBDATA)

(bc),a
be

a
de,hl
hl,be
de,hl
nc,read_byte
2, $BXFER_GOOD

Yes, so read a byte.
Reset the CARRY flag.
No, so try again up to BTRIES times.

- e e

-

Never got a FIFO ready, so quit.

Read a byte from the BMC.

Place the byte in the buffer.
Point to the next position in the buffer.

- e

3 Reset the CARRY flag.

3 Put contents of de in hl to permit use of sbe.
3 Have we read all the bytes yet?

3} Restore usual contents to de and hl.

3 No, so get another one.

}

Yes, so quit. Return function completion

} code in register a.

be 3 Restore alternate registers.

ix 3 Restore

ix register.

sImplement in assembly code a C routine to permit very rapid output of
'a page of data to the bubble memory.

schar
3
export
import
region
bubwrite:
Rcomment

bubwrite
issububemd
code

Register usage:
2 Scratch space.

be Constant 1 for subtractions.
da Constant PAGELENGTH.

hl Constant BTRIES

push
1ld
add
*xx
push
1d
1d
*xx
1d
push
call

bubwritelchar *buffer)

be' char ¥buffer.

ix

ix,0 3 ix <-- sp
ix,sp

3 Access alterrate registers.
be 3 Save be'

e lix+4) y be' <-- char wbuffer
byl ix+5)

3} Return to primary registers.
hl,$BFIFORESET 3 Issue the FIFO Reset command to the BMC.
hl
issububemd
hl
$FALSE IQuit if this command didn't work.

168

i nZ,frok2
1d a,$BXFER_BAD
e exit2
frok2:
1d 8, $BHRITE
out ($BUBCTRL),a
1d hl,$BTRIES~1
1d be,1l
write_status:
in 2, $BUBCTRL)
bit $BBUSYBIT,a
ir nz,write
bit
jr NnZ,write
bit $BFAILBIT,a
jr nz, timgout2
1d 8, $BNEVER_READY
i exit2
timeout2:
or a
sbe hl,be
jr ncrwrite_status
1d a, $BNEVER_READY
i exit2
write:
1d de, SPAGELENGTH-1
write_byte:
1d hl,$BTRIES-1
check_fifo2:
in a,($BUBCTRL)
bit $BFIFOBIT,a
jr nz,putbyte
or a
sbc hl,be
jr ne,check_fifo2
id a,$BXFER_BAD
jp exit
putbyte:
exx
1d a,(bec)
out ($8UBDATA),a
inc be
axx
or a
ax de,hl
sbe hl,bc
[} “1"'1
jr nc,write_byte
1d a,$BXFER_GOOD
exit2:
axx
pop be
axx

$BOPCOMPLETEBIT,a 3 Not busy.

’
$
’

. e e W W we

v e e W e W

]

- - e e e -

-

Issus the WRITE commend to the BMC.

Look for BUSY bit up to BTRIES times.
Used for subsequent decrements.

Get status from BMC.

Has the command accepted?

Yes, 30 write a block of data.

Has operation complete?
Yes, s0 write a block of data.
Not busy, not done. Failed?
Bidn't fail. Don't know why.
timeout.

Did fail, so quit. Return function
completion code in register a.

Allow @

Reset the CARRY flag.

Have we looked for a BUSY signal BTRIES
times yet?

No, so try again.

Yes, so we timed out. Quit and return
function completion code in register a.

Prepare to write PAGELENGTH bytes to BMC.
Prepare to check FIFO bit BYRIES times.
Get status byte from BMC.

Is the FIFO bit set, i.e. FIFO ready?
Yes, so read a byte.

Reset the CARRY flag.

No, so try again up to BTRIES times.

Never got a FIFO ready, so quit.

Get the byte from the buffer.
Write a byte to the BMC.

} Point to the next position in the buffer.

oW W W W W e

-

Reset the CARRY flag.

Put de into hl to permit use of sbe.

Have we read all the bytes yet?

Restore usuasl contents to de and hl

No, so get another one.

Yes, 30 quit. Return function completion
code in register a.

Restore alternate registers.

169

pop ix 3} Restore ix register.
ret

9]

I. FILENAME CLOCK.H

/% This file contains external prototyping declarations of all functions used
in "clock.c", */

extern void clockint(struct datetime %clock,struct idatetime *iclock)s
extern void clockread(struct datetime »*your_clock))
extern char clockcompare({struct idatetime ¥clockl,struct idatetime Xclock2)s
extern void clockset(struct datetime %*clock)s
extern void clocksum(struct idatetime *result,
struct idatetime *clockl,
struct idatetime %clock2)s
extern void cdump_clock(struct datetime %*clock);
extern void rtclvoid)s
extern void show_waketime(struct idatetime »waketime)s
extern void testtimeoutivoid)}
extern char timeout(int delaytime,int measure);

J. FILENAME CLOCK.C

/% clock.c »*/

#include "vibro.h"
#include '"convert. h"
#include "inout.h*
#include "newio.h"
#include "global.h"

void clockint(struct datetime *clock,struct idatetime *iclock);
void clockreadlstruct datetime *your_clockl;
char clockcompare{struct idatetime *clockl,struct idatetime *clock2);
void clocksetistruct datetime %clock);
void clocksum(struct idatetime *result,
struct idatetime %*clockl,
struct idatetime *clock2)s
void dump_clockistruct datetime #clock);
void dump_iclockistruct idatetime %clock))
void get_timelstruct datetime %date_and_time);
void rtelvoid)s
void show_waketime(struct idatetime wmwaketime))
char #strcpy(char %sl, char %#s2);
void testtimeout(void);
char timeout(int delaytime,int measure);

static char #monthsl] = (
"#% Invalid month #%","January","February","March",”"April", "May" ,"Jurne",
"July',"August" ,"September", "October", "November" ,""Decembar"

)

170

7/ FEIEIEIIII I HIIE I JEIEIEHIEI I IEIEIEII 3 JIE 6 DI DI IE J6 3636 HE I I NI I I JIE I 3636 D SEIEIE 3 36 36 36 .36 36 26 26 D6 HE I 36 /
/% Convert a datetime structure to an idatetime equivalent. This allows
arithmetic to be performed on dates and times. */
void clocKkint{struct datetime ®clock,struct idatetime *iclock)
<
iclock->imonth = bed_int{clock->month);
iclock->idate = bed_int(clock->date)s
iclock->ihour = bed_int(clock->hour)}
iclock->iminute = bed_int(clock->minutae)s
iclock->isecond = becd_int(clock=->second)s
iclock~->ihundredths = bed_int{clock->hundredths)s
iclock->ithousandths = bed_int(clock=->thousandths)y

7/ PRI I 66336 T3 I HEIEIE I 236 36 FIE I TN TIE NI I I HE I I I NI FEITE I I I I I 236 36 36 6 6 36 3¢ /
/% This routine fills a clock structure with the current date and time. %/
/% It will not worry about the hundredths and thousandths, but it will attempt
to ensure that at least the seconds have not changed between the first
and the last reads of the various clock registers. Thus the hundredths
and thousandths should not be regarded as accurate, ever. %/
void clockread(struct datetime *your_clock)
{
int i}

your_clock->thousandths = input({ THOUSANDTHS)}
your_clock->hundredths = input!HUNDREDTHS)}
your_clock->second = input(SECONDS I3
your_clock->minute input(MINUTES)
your_clock=->hour = input{HOURS);
your_clock->date = input(DATE)
your_clock->month = input(MONTH)
)} while (your_clock->second !'= input(SECONDS) 22 ++i <= 10 % TRIES))

7/ F T T I 3636 366 36 2636 F6I6 36 2 26 HI6 HI 36 36 36 36 JEIE 36263606 6 - 6 3T 36 36 36363636 36 3 0363636 36 3636 36 36 36 06 36060696 J696 36 36 36 36 3 46 36 36 36 96/
/% Compare two clock times. Return TRUE if the first is later than or
equal to the second, FALSE otherwise. This routine ignores the
hundredths and thousandths, since they are inaccurate. »/
char clockcompare{struct idatetime *clockl,struct idatetime *clock2)
{

int differences

difference = clockl->imonth - clock2->imonths
/% This logic allows you to decide January comes after December. %/
if ((difference + 12) / 12 < 6
88 difference '= 0) return(TRUE)
if (difference '= 0) return(FALSE)s
if (clockl->idate < clock2->idate) return(FALSE)}
if (clockl->idate > clock2->idate) return(TRUE))
if (clockl->ihour < clock2->ihour} return(FALSE))
if (clockl=>ihour > clock2->ihour) return(TRUE)}
if tclockl->iminute < clock2->iminute) return(FALSE 1}
if (clockl->iminute > clock2->iminute) returniTRUE))

171

if (clockl->isecond < clock2->isecond) return(FALSE)

return(TRUE)}

7/ HEHHHHHHHEHEH I HHHEHOHEHE O/
/% This routine sets the real time clock. »/
void clockset(struct datetime *clock)
<
get_timelclock)s
output(MONTH,clock->month);
output(DATE ;clock->date)}
output{ HOURS ,clock->hour)
output(MINUTES ,clock->minute)}
output(SECONDS ,clock->second)}

7/ T30 3636 96 96 2626 362626 363636 HHIEIDEIEIE 16 3696 3636 36 96 36 36 36 2360696 36 36 3636 396206 3HE6 36 3636 3676 96 26 36 D6 3636 36 36 3 36 JEI6 36 363636 36 3 3 2 26 3¢/
/% Find thae sum of two calendar periods. »/
void clocksumistruct idatetime *result,

struct idatetime *clockl,

struct idatetime %clock2)

int maxdate; /% The last valid date in the month. »/

result->isecond = clockl->isecond + clock2->isecond;
result->iminute = result->isecond / 60}
result->isecond /= 60
result->iminute += clockl->iminute + clock2->iminutes
result->ihour = result->iminute / 60;
result->iminute #= 60;
result->ihour ¢z clockl->ihour * clock2->ihours
result->idate = result->ihour / 243
result->ihour %= 243
result->idate += clockl->idate ¢+ clock2->idate:
result->imonth = 1 ¢+ (clockl->imonth + clock2->imonth - 11 7 123
maxdate = (lresult->imonth == ¢) || (result->imonth == 6)
|} (result->imonth == 9) || (result->imonth == 11)) ? 30 : 31;
/% Tha real time clock makes no provision for leap year, so leap years
are ignored in this program (sigh!) */
maxdate = (result->imonth == 2) ? 28 : maxdate:
result->imonth += (result->idate - 1) / maxdates
result->idate = 1+ (result->idate ~ 1) / maxdate)
result->imonth = 1 + (result->imonth - 1) 7 12

/FHHHHEEHHHHHHHHHHEHHHHHHHHEHHHHHHHHHHEHHHEHEHHHHHEHHHESHHHHEHHEHEHHE /
/7% Print a clock structure. #/
void dump_clockistruct datetime %*clock)
<
int hour, minute, second, date, month;

hour s bed_inticloek->hour))
minute = becd_int(clock->minute);
second = bed_inticlock->second))
date 2z bed_int(clock->date))y
month = bed_int(clock->month))

printf("/02.2d:702.2d:7%02.2d “s Zdn.r",
hour ,minute,second,
monthsl month > 12 ? 0 : month 1,
date
)3

/R HHHHHHHEHHHHHEEHHHEHHHEHHEHHHEHHEHHOHHEROHHOHE/
/% Print an iclock structure. %/
void dump_iclock(struct idatetime %clock)

{
printf("£02.2d:/02.2d:/02.2d Zs Zdnr",
clock->ihour,clock->iminute,clock->isecond,
monthsl clock->imonth > 12 7 0 : clock->imonth 1,
clock->idate
)3
)

/P36 36336 9696 26 96 I 6 J6 I 36 38 2306 I I 36 I HII NI FIE I TN IE JEIIHE JIE 6 FEIEIEIEN I 36 I I I K F M IR/
void get_timelstruct datatime *date_and_time)
<

int month, date, hour, minute, second, maxdates

static char crll]l = "nr'";

while (TRUE) (
printf("Month? (1-12) ");
month = getint();
if tmonth >= 1 22 month <= 12)
break}
printf("Invalid month. Re-enter it.nr");

)
printflicr)s
maxdate = (month == & || month == 6 || month == 9 || month == 11) ?

30 : 31;
maxdate = (month == 2) ? 28 : maxdate;
while (TRUE) (
printfl{"Day? (1-Zd) “,maxdate))
date = getint();
if (date >= 1 8% date <= maxdate!}
break;
printft" nrinvalid date. Re-enter it.nr")y
)
printflicrl;
while {TRUE) (
printf(“Hour? (0-23) ")
hour = getint(};
if (hour >3 0 && hour <=z 23)
break
printf(“Irnvalid hour. Re-enter it.nre")s
)
printflcr)y
while (TRUE) (
printft{"Minute? (0-59) ")
minute = getint(),
if (minute >= 0 2% minute <= 59)
break)

173

printf("Invalid minute. Re-enter it.nr");
)
printficr))
while (TRUE) (

printf("Second? (0-59) “)3

second = getint();

if (second >3 0 && second <= 59)

break;

printf("Invalid second. Re-enter it.:nir")y
)}
printflicr);
date_and_time->month = int_bcdimonth);
date_and_time->date int_bcd(date)s
date_and_time->hour int_becdihour)s
date_and_time->minute int_bed(minute))
date_and_time->second int_bcd(second)}

7/ BT 6 3TN I 636 I FE I I T 263 2626 I 163636 36 0TI I I IIE I I DI I FIE 6 I I 96 3636366 9696 36 H I I/
/7% This routire is a menu-driven collection of routines for testing the
clock functions. */
void rtc(void)
{
char datas

while (TRUE) (
printf(
“nrReal time clock functions.nrnr
A Read Clock.nr
B Set clock.nr
C Test timeout() function.nr
Z Return to main menu. nr")j

data = tolower(taermin());
printf("Zcnr',data);
switch (data) {
case 'a':
clockread(&clock)}
dump_clock(&clock)}
break
case 'b':
clockset(gclock)s
break)
case ‘'c':
testtimaout()
breaks
case 'z2':
return)
dafault:
printf("Use a valid letter please.\nr");
breaks

174

7 FRII NI I I S HEHEEHEHHEHHEEHEEE O/
/% This routine displays the wake-up time. %/
void show_waketime{struct idatetime *waketime)
(4
char s[STRLENI]3 /% String for itoal) routine. ¥/

itoa(waketime->imonth,s))

printf{“Hake-up time is: :nrMonth = /s ",s)}
itoa(waketime->idate,s)s

printf(“Date = “s “,s)3
itoalwaketime->ihour,s)s

printf("Hour = /s ",s))
itoa(waketime->iminute,s)s

printf("Minute = “s “,3)%
itoa(waketime->isecond,s);

printf("Second = Zs nr",s);

/YBT3 36 36 0K IEIIIE JIEIE NI IEIEIEIEIEIE 66 I I I FEIIE I NI JIIIE NI I IEIEIE I I I I I I I8/
/% This routine is used to test the timeout() function. »*/
void testtimeout(void)

¢
char data, /% A character entered from the keyboard. %/
units; /% The units of delay. %/
int delays /% The number of units of delay. */

while (TRUE)
printf("Test of timeout() function.nrnr
Specify time units for delay: nrnr,

A Hoursnr

B Minutesnr

C Secondsnr

Z Return to previous mernu. nr")j

data = tolower(termin())
printf(*/enr,dataly
switch tdata) {
case 'a':
units = HOURS)
break)
case 'b':
units = MINUTES;
breaks
case 'c':
units = SECONDS)
bresks
case 'z2’':
returns
break)
default:
printft{"Use » valid letter plesse..n.r")y
bresk
)
printf(" n rHow many units of delay do you went? nr")y
delay = getint()}
printft” nrStarting delay: n.r")s

175

clockread(8clock)}
dump_clock(&clock)y
timeout(delay,units)

whilet ?timeout(NULL,NULL))3
printf("Delay complete. nr")y
printf("Zc",BELL))

clockreadt gclock)
dump_clock(éclock)}

/IHHEHEHHHHHHHHHHHHHHHEHHHHOHHHEHHHOHHHEEHEHEHHEHOEEHEHEHEEHEHEHEHERNE /
/% This routine is used to initiate a timeout sequence, and to test for
completion. To set the desired delay time, the parameter "delay"
should be non-zero. To test for completion, "delay' should be zero (NULL).
When setting the delay time, the function always returns TRUE. When
testing for completion, it returns TRUE if the time has elapsed, FALSE
otherwise. »*/
char timeoutlint delaytime,int measure)
/% “"delaytime" is the length of the timeout. %/
/% “"measure” is the unit of measure of time. This can be
MONTH, DATE, HOURS, MINUTES, or SECONDS. %/

static struct datetime timenow:
static struct idatetime itimenow, waittime

/% Allow the user to interrupt by use of CTRL characters. ®/
allow_ctrl_interrupts())

clockreadt{ $timenow)s
clockint(&timenow,8itimenow)s
if (delaytime == NULL) { /» If delaytime == NULL, then check to
see if timeout period is over. %/
return{clockcomparal &itimenow,&waketima));s
)} else { /% Otherwise, set the wakeup time. #/
waittime.imonth = waittime.idate = waittime. ihour
= waittime.iminute = waittime.isecond = 03
switchimeasure) (
case MONTH:
waittime.imonth = delaytimes
breaks
case DATE:
waittime.idate = delaytime)
break})
case HOURS:
waittime.ihour = delaytime;
break
case MINUTES:
waittime.iminute = delaytime)
break}
case SECONDS:
waittime.isecond = delaytime)
break)
)
clocksum(Swaketime,ditimenow,waittime);
show_waketime! twaketime)

176

return{TRUE)

K. FILENAME CONVERT.H

/% This file contains external prototyping declarations for all functions
in "convert.c". ¥/

extern char atoh(char *ascii)j

extern unsigned int atohexintichar asciill)y
extern int atoilchar %s))

extern char ¥bcd_ascl(char bed)s

extern int bed_int(char bed)s

extern char *ctoh(char byte)s

extern char int_bed(int decimal)s

extern char ®itoalint n, char sl])y

extern char tolower(int cl}

extern char *uitoh(unsigned int word)}s

L. FILENAME CONVERT.C

/% convert.c */

#include "vibro.h"
#include "inout.h"
#include ''global.h"

char atohl(char *ascii)y

unsigned int atohexintichar asciill);
int atoilchar *s))

char %bcd_ascichar becd)s

int bed_int(char bed)s

char *ctohichar byte)s;

char int_bcdlint decimal};

char ®*itoatint n, char s(1)

char tolower(int c)j

char *uitoh(unsigned int word)s

/IHHEHHHHHHHHHHHHEHHHHHHHEHHEHHHHEHEEE R R HEHEHEE
/% This routine converts a two-byte ASCII string representing a valid
hexadecimal byte into a single hexadecimal byte. #/

/T HEHEE AN/
char atoh{char *ascii)

/% "ascii" is a string representing a hexadecimal byte. %/
L4

int i3

char result; /% The hexadecimal byte after conversion. »/

result = 0
for (iz03i < HSTRLEN 8% asciilil) s NULLj++i) ¢
result #= 16}
if ('0' <= asciili) &8¢ '9' >z asciilil)
result ¢z asciili) - ‘0"

177

else if ('a' <= asciili) && 'f' >= asciilil)
result += 10 + asciilil - 'a'y
)}
return(result)

/FEHHHHHHHHEHEEHEEHEEEEHHHEHEHEHHEHHEHEEEN I OO/
/% This routine converts a four-byte ASCII string representing a valid

hexadecimal word into a single unsigned integer. ¥/
/RO HEEHHHORHHHEHEHHHHHHHHEEHEHHHHEHHOE)/

unsigned int atohexintichar asciill)

<
int i3
unsigned int result; /% The hexadecimal word after conversion. %/
result = 03
for (i=03i < HEXINTSTRLEN &8 asciilil '= NULLj3++¢i) (
result *= 163
if ('0' <= asciilil && '9' >= asciilil}
result += asciif{il] - '0';
else if ('a’' <= asciilil] && 'f' >= asciilil)
result += 10 + asciilil] -~ 'a‘'y
3
returniresult);
}
/P03 36 36 36 36 96 96 36 3636 2363633638 36 36 36 J26 36 3636 36 36696 9696 636 365696 36 36 36 36 36 6 336 3636 369636 76 36 36 6 36 06 069636 36 36 36 36 3 36 36 36 2 K J 2 36 /
int atoilchar *s) /% convert string to integer %/
{
static int n, sign
sign = 13
n = 03
switch (%s) (
case '-': sign = -1
casg@ ‘+': ++s3
}

while (%s >= '0' 88 %3 <= '9') n = 10 % n 4 %s+¢ - '0'}
returnisign * n)j

/I I I S IR SN NI/
7% Convert a byte of binary coded decimal data to character string format., »/
/% No check is made to ensure that input data really IS in BCD format. %/
char *bcd_ascichar bed) /» Tested March 16, 1987 »/
[4

static char asciil3)y

int bedint)

bedint = Ox00ff & ((int) bed)s /% Corwvert to integer. %/

7% 1f the tens digit is a zero, put a blank in its places
otherwise, put an ASCII digit there. %/

osciil0) = (Oxf0 & bedint) ?

(0x30 | (bedint >> 9)) ¢ * 'y
asciill]l = 0x30 | ((bcdint & 0x0f))s /% Get the units digit. »/
asciil2] = NULLy /7% Terminate the string with
a null. »/

178

returnlascii)y

7/ FEFEIEIEIEIEI HIEI NI FIIE I HII I IIEIIEII M I HIEIEIEIEITE 636 36 26 I DI TEIE HIE DI I JE 3636 36 36 0606 JE 36 26 9636 3 J 06 06 /
/% Convert a byte of binary coded decimal data to integer format. »/
/% No check is made to ensure input data really IS in BCD format. »/
int bed_int(char bed) /% Tested March 16, 1987. »/

/% "bed" is the BCD character to be converted. */
L4

int bedint, result;

/% Take the units by masking off the tens. %/

/% Then throw away the units and keep

the tens.»/

bedint = Ox00ff & (int) beds

result = O0x000f & bedint)

/¥Multiply the tens by 10, and add to result.»/

result += 10 * (bcdint >> ¢)3

returniresult);

/T 63636 36 2696 FH T HIEI I IS TIE NI IITEIIIE 636 3636 I I NI JI I I IEIE I I I I I I I HI NN/
/% Convert a character to hexadecimal ASCII string format., »/
char *ctoht(char byte)

{

static char asciilHSTRLEN];

int byteint, nibble, base;

byteint = O0x00ff & ((int) byte)s /% Convert to integer. »/

nibble = byteint >> 43 /% Gat the tens digit. »/

/% Find out whether the nibble is in the range [0-9), in which
case its ASCII representation starts at Ox30 (48 decimal), or
{10-151], in which case the ASCII representation starts at
A = Ox%l (65 decimal). In the latter case, add the value of the
nibble to 65-10 = 55. */

base = (nibble >= 10) ? 585 : 483

asciil0] = base + nibbles

nibble = byteint & 0x0f; /% Get the units digit. »/

base = (nibble >= 10) ? 55 : 48;

asciill] = base ¢+ nibbles

asciil2] = NULLS /% Terminate the string with

a rull, »/
returniascii)y
)

7/ HHHHHHHHHHEHHHHHHHHHHEHHE HHHHEHHHHHHHHHEHHRHOHHHEHEEEHHHHEEHHHHEHE
/% This routine converts an integer to s bimary coded decimal character.
Since 99 is the largest legitimate BCD rnumber, the argument "decimal®
is taken modulo 100. »/
char int_bcd(int decimal)
/% "decimal" is the number to be converted. ®/
<
int result;

/% Make sure decimal is a positive number. w/

decimal = (decimal < 0) ? -decimal : decimaly
decimal %= 100, /% If decimal is too big, take

179

it modulo 100. */

result = (decimal / 10) << 43 /% Get the tens and shift them into the
high order half of the byte. »/
result += decimal Z 10; /% Add in the units. */

return((char) result);

/T I III I I I NI FIHEHHHHEHEHEE I/
/% itoa - convert n to characters in s.
This program is from TOOLWORKS C/80, Version 3.1, by Walt Bilofsky. %/
char ®itoalint n, char sl 1)
<
static int ¢, k3
static char %p, %q)

if ((k = n) <0)

k = -k3
qQ=p =5
do {

*pe+s = K £ 10 + 'Oy
} while (K /= 10)3
if (n < Q) *pes = =y
l»p:o;
while (q < --p)

C T %qQj ®qé+ = Xp} ¥p = ¢})
return (s);

/T TN I I I 2T 36 36 DI I D 6 I 6 J AT JEIE I I I 36 36 HIE I 3 I3 3 23636 I I I I I IR/
/% tolower - if the input is in [A..2], convert to lower case

This program is from TOOLKORKS C/80, Version 3.1, by Walt Bilofsky. %/

char tolowertint c¢)

<
if (*A' <= c 8% ¢ <= '2'}
return (c + 0x201);
return c3

)

/PR3 366 36 T 66 T JI 06 06 2 6T 36 166 3626 063636 36 2 D 69636 36 30636 36 36 0006 26 2696 36 6 36 36366 36 36 DI NI I3 36 3 336 36 3 F 3 3H 398/
/% Convert an unsigned integer to hexadecimal ASCII string format. »/
char *uyjitoh(unsigned int word)

{
static char ascii{HEXINTSTRLEN ¢+ 113
unsigned int nibble:s
int i)
ascii[MEXINTSTRLEN] = NULL}
for (i®03i < HEXINTSTRLENj++i) (
/% Get the current nibble, in order from most to least significant. %/
nibble = Ox000f & {word >> (4 # (3 -~ {))))
/% If nibble >= 10, corwert it to a letter from ‘A’ to °'F',
If nibble < 10, convert it to a letter from '0' to '9'., #/
asciili) = (nibble >= 10) ? ('A*' ¢+ nibble - 10) : ('0C' ¢ nibble)}
}
returntasciily
)

180

M. FILENAME DELAY.H

/% This file contains external prototyping declarations for all functions
in "delay.s". ¥/

extern void delay(int n)j

N. FILENAME DELAY.S

3 delay.s
] Adapted from a program by Mr. David Rigmaiden of the
) Space Systems Academic Group at the Naval Postgraduate School.

#define LOOPCOUNT 1041

3 Delay for n hundredths of a second.
3y void delay(n)
3 int n;

/% The number of hundredths of seconds of delay desired.

export delay
region code
delay: push ix y t=15T.
3y Cause ix to point to the first parameter.

1d ix,% 3 t=1aT.
add ix,sp 3 t=15T.
id c,(ix+0) y t=19T7.
ld b,(ix+l) 3 t=197.

LoorPl: 1d de, $LOOPCOUNT 3y t=10T.

LOOP2: dec de 3 t= 6T. Count down to zero in LOOP2.
1d a,d 3y t= 4T,
or e 3y t= 4T,
je nz,L00P2 3 t=10T. Irner loop t=24T.
dec be 3 t= 6T. Repeat LOOP1l until time is up.
1d ab 3 t= 4T,
or c 3} t= 6T,
jp nz,L00P1 3 t=10T. Outer loop t=(34+24%LOOPCOUNT)T.
pop ix 3 t=14T. Restore ix to its initial value.
ret 3 t=10T.

1

w e e e W

Total Delay =(106+(34+24%LOOPCOUNT Jsn)T,

Solve n*l0 ms = (106+(34+2¢*LOOPCOUNT P IT with T = 1/¢ = 400 ns to
get n = LOOPCOUNT. ¢ = 2.5 MHz.
to a delay of 1.0008 s for an error of 0.08/.
this leads to a delay of 10.05 ms instead of the 100 ms recuired, for
and srror of 0.5/,

For nx100, LOOPCOUNT = 1041, leading
For n=1,

i81

*/

O. FILENAME EXPMNT.H

extern char ad_readichar}}

extern int adtoint(char addata,unsigned long multiplier);
extern void alter_pagef(struct pageOdata % pagezero))
extern char bad_idea_to_record(char show))

extern char baro_switchivoid);

extern char checkprtivoid);

extern char colder_than(int reference))

extern void display_data_page(struct full_log_page * datapage))
extern void display_pagelO(struct pageOdata * pagezero);
extern void do_sweeplvoid);

extern void expmnt(veoid)s

extern void initialize(void);

extern char listen(void);

extern char logeventichar event);

extern void log_menulvoid);

extern void read_ad(void)y

extern void shut_down(void);

extern void shut_down_no_log{void)}

extern char ssdrmode(char mode);

extern char ssdr_status(void);

extern char voltages_lowivoid)s

extern char we_launched(void)s

P. FILENAME EXPMNT.C
/% expmnt.c %/

#include "vibro.h"
#include "clock.h"
#include "convert.h"
#include “inout.h"
#include "main.h"
#include "power.h"
#include "newio.h"
#include '"bubble.h"
#include "global.h"

char ad_read(char port)s

int adtoint(char addata,unsigned long multiplier)s
void alter_pagel(struct pageOdata * pagezerc))
char bad_idea_to_recordi(char show)s

char baro_switch(void)s

char checkprt(void))

char colder_than(int reference);

void display_data_page(struct full_log_page # datapage))
void display_pagel(struct pageOdata # pagezero)s
void do_sweep(void)}

void expmntivoid);

char initializetvoid)y

char listen(voidls

char logeventi(char event);

void log_mermulvoid);

void monitor_heaters(void);

void post_launchl(void)s

void recordl(voidl}

void shut_down(void)y

void shut_down_no_log(void)}
char ssdrmode(char mode)
char ssdr_status(void)s
void short_experiment(void)y
void show_event(char event))
char voltages_low(void))
char we_launched(voidi}

/ FHHHHHEHHEHHHHHHEHEEHHHHHHHHEHHEHHHHHEHHHHRHHHHHHERHHHHHHHHEHHHHHHHRONME /
/% This routine gets data from the analog to digital converter. %/
char ad_read(char port)

<
output(port,0); /% You must write to the port before you
can read it. %/
delay(1l};
return(input(port)};
)

7/ FFTIIE I HIIE NI I I TN FTEHI TN I I 3 HHIEIIEI I TN I FEIEIE DI 36 636 36 36363636 36 36 96 36 36 36 36 36 M S 66/

/% This routine converts a byte of data from the A/D converter into an
integer. In order to reduce the amount of code generated by the compiler,
it uses no floating point operations.

The routine assumes that the convertad value lies on a line which passes
through the origin and whose slope (in some arbitrary units) is given by
the multiplier. Consequently, this routine always conwerts value of zer
to zero.

To obtain the correct multiplier amounts to calculating the slope and
scaling it to permit integer operations to susceed.

For example, assuma that a value of 255 in the A/D converter (the
maximum possible) reprasents 15vV. A difference of 1 in the value
read by the A/D converter represents

15V / 255 divisions = 58.8235 mV/division.
Multiply this by 1Eé6 and round off to get the basic multiplier:

58.8235 * 1E6 = 58824.
Using this multiplier will give results in units of volts. To get units
of tenths of volts, say, increase the multiplier by a factor of 10 to
588,240. The result will be an integer representing the chosen units;
the decimal point is implied to be to the left of the rightmost digit.

To avoid an overflow upon multiplication, the multiplier should
be kept less than

(2%%32)/255 = 16,843,009,
The greates achievable accuracy is obtained when the multiplier is scaled
up by multiplies of 10 as much as possible without exceeding this limit.
n/
int adtoint(char addata,unsigned long multiplier)
<
/% During compilation, this line will be flagged because it presents
the possibility of truncation. The problem is not serious as
long as the limit on the multiplier is observed, as discussed above. ®*/
unsigned long value; /»* A long integer version of "addata". »/

value = (unsigned long) addatas

183

returnt lint) ({(value * multiplier) + 500000L) / 1000000Li))s

/PP I I I I NI NI IIIIIII I I NI I I NI IEIEN I I I I HIEIE I 4 2 I I FE NI/

/% This routine allows the user to alter the flags and pointers in page zero
for the purpose of permitting program functions to be tested tharoughly.
Use caution in altering them. »*/

void alter_pagel(struct pageldata ¥* pagezero)

<
char data; /% Holds a character from the keyboard. %/
char changaes = FALSES /7% TRUE if the page zero needs to be altered,
FALSE otherwise. HWe know that no unsaved
changes have been made to page 0 before this
routine is invoked, so we set this to FALSE
initially. %/
/% Variable "flag" is used to permit the values 0 and 1 to be displayed
as FALSE and TRUE respectively. ¥/
static char *flagl] = ¢
“FALSE",
“TRUE"
)3
/% Display this mernu repetitively until choice Z is made. %/
while(TRUE) (
printfc"
A Toggle 'sweepstarted' flag from “s to “s.nr
B Toggle 'launchdone’ flag from /s to “s.nr
C Alter value of next available page from Ox/x = Zd. nr
D Alter value of next available half page from Zu to Zu.nr
E Toggle 'full_experiment' flag from /s to “s.nr
F Specify the 'RECORD_start_time' (make this at least 12 hours before thenr

present to permit RECORD mode to be initiated.)nr,
2 Exit this merw. nr",
flaglpagezero->sweepstarted 21 : 0 I,
flaglpagezero->sweepstarted 2 0 : 1 1,
flaglpagezero->launchdone 7 1 : 0 1,
flaglpagezero->launchdone 7 0 : 1 1,
pagezero->page, pagezero->page,
pagezero->halfpage,
(pagezero->halfpage == 0) ? 1 : 0,
flaglpagezero->full_experiment ? 1 : 0],
flaglpagezero->full_experiment 7 0 : 1]
1

/7% Input a character, convert it to lower case, and display it. ¥/
data = tolower(termint)))
printf(“Zenr",data)l;
switch (data) €
case ‘'a‘: /% Complement the “sweepstarted" flag. »/
pagezero->sweepstarted = 'pagezero->sweepstarted)
changes = TRUE)
break; /% Complement the "launchdone flag. »/
case 'b’':
pagezero->launchdone * 'pagezero->launchdone)

184

changes = TRUES
break)

case 'c': /% Ask the user for a page number. Let this be the

next page used for recording items in the log. %/

pagezero->page = getpagenol()
changes = TRUES
break)

case ‘d': /% Complement the "halfpage" number. %/
pagezero->halfpage = (pagezero->halfpagae == 0) ?2 1 : 03
changes = TRUE}
break s

case 'e’': /% Complement the "full_experiment" flag. %/
pagezero->full_experiment = !pagezero->full_experiment)
changes = TRUE)
breaks

case 'f': /% Ask the user for a new "“RECORD_start_time". »/
get_time(& (pagezero->RECORD_start_tima))3
changes = TRUE})
breaks

case 'z": /% 1f any changes have been made, store them in page

0 and quit this routine. */
if (changes) {
if ('bubio(BHWRITE,O0,(char %) page0_buffer)) (
printf("Update to page 0 failed.nr");

}
returny
default:
printf("Use a valid letter, please.nr");

773636362696 36 96 36 56 36 336 3636 30 3696 3636 362606 0 D006 36 36 36 36 36 JE JE P FEIE D626 36 3696 3636 36 3096 36 36 36 J6 2606 2 369696 6 36 36 36 36 36 362636 36 3 HE I 2 3 38 /
/% This routine checks to see when RECORD mode was last initiated.
If this time was within the last 12 hours, the routine returns TRUE,
meaning that it is not a good idea to enter RECORD mode now. This
will avoid a situation where RECORD mode is restarted in the middle
of a mission, wiping out the recorded data. 'show" must be TRUE to display
the time when RECORD mode can begin. If it is FALSE, the display is
suppressed. */

char bad_idea_to_recordi(char show)

<
struct datetime current_time)
struct idatetime icurrent_time) /% Integer version of
current time. %/
struct idatetime istored_times /% Integer version of
stored time. %/
struct idatetime iRECORD_delay_time) /% Integer format of time when

RECORD mode can begin. %/
struct idatetime iRECORD_delay_constants /% Integer format of minimum

time between successive

startings of RECORD mode. %/

iRECORD_delay_constant.imonth = iRECORD_delay_constant.idate =
iRECORD_delay_constant.iminute = iRECORD_delay_constant.isecond = 0)

185

iRECORD_delay_constant.ihour = RECORD_DELAY)

/7% Get the current date and time snd convert to integer format. »/
clockreadl Scurrent_time))
clockint(dcurrent_time,8icurrent_time))

/% Gat the date and time stored in the bubble memory as the last time
that RECORD mode was initiated and convert to integer format. »/
clockint(&(pagezero->RECORD_start_time),tistored_time)s

/7% Add the two dates and times to get the next time when RECORD mode can
be initiated. %/
clocksum(£iRECORD_delay_time,2istored_time,2iRECORD_delay_constant);

if (show) (
printf("Current time: ")
dump_clock(dcurrent_time)s
printf("Time when RECORD mode last was begun: "))
dump_clock(&l pagezero->RECORD_start_time))s
printf(“Time when RECORD mode can be begun again: "))
dump_iclock(8iRECORD_delay_time)s

/% Raturn TRUE if the current date and time is less than RECORD_DELAY
hours after the stored date and time. Otherwise, return FALSE. »/
returniclockcompare(2iRECORD_delay_time,&icurrent_time)))

/TN NI I I I 1 I H I I II IS I I IEIHIE I I FIEIEI I I I I I I I I NI I/
/% Check to see if the barometric pressure switch tripped.

Make an entry in the log and return TRUE if so3 return FALSE otherwise. %/

7/ F 263363636 36 3634 J6 2 I I 3636 16 16 363 I FEIE JEHETIIIEIIE FIEIETTEIEFEHIIE I DI I 363 6 36 36 36 36 36 HETEIEIEIE I 36 JE I JEIEIEJE I HE I NI 3 /
char baro_switchlivoid)

(

char addata) /% Holds a character from port READCl. %/

/% 1f the BARO_ON bit of the READC1 port is TRUE, then the barometric
switch has been triggered. »/
addata = input(READC1);
if laddata & BARO_ON) (
printf("Barometric switch triggered. nr")s
logevent(DPRESSURE)}

7/ FHHHHEHHHEHHHEHHHHHHHHHHEHHHEHHHEHHHHHHHHHHHHRHHHHHHHHOHHHHHHOHHEENE
/% This routine checks to see if there is a printer comnected to the

controller. It returns TRUE if there is one, FALSE otherwise. #/

char checkprt(void)

<

/% 1f the TERMON bit of the READC1 port is 0, then a terminal
is comnected. In this case return TRUE; FALSE otherwise. %/

return((input(READC1}) & TERMON)}

186

/REHHEHHIHHHHHHHHHHHHEHHHHHHHHHHHEHHEHHHH RO HHOHHOHE RN/
/% This function displays the data in page zero. %/
void display_pageO(struct pageOdata * pagezero)
<
printf{"Sweepstarted = ")y
if (pagezero->sweepstarted)
printf("TRUE ")
else
printf("FALSE ")
printf("Launchdone = ")
if (pagezero->launchdone’
printf("TRUE ")
else
printf("FALSE ")
printf(“Full-expmnt = "),
if (pagezero->full_experiment)
printf("TRUE nr")s
slse
printf("FALSEnr");
printf("Last time RECORD mode was initiated: ")
dump_clock(&(pagezero->RECORD_start_time))3

printf(" n rNext page = Ox/x = #u ", pagezaro->page pagezero->page)
printf("Next halfpage = Ox/x = Zunr", pagezero->halfpage,
pagezero->hal fpage)s

7 FEFEIEF T IEIE NI HIEI I IIEIEIIEI I I I I IEHIEIIEI I I I I 3636 3 I I IEIEIE I 6 36 6 3636 06 H I I I I6 36 JI 36 3 I I I/
/% This function returns TRUE if the bubble memory's temperature is below
the reference value; FALSE otherwise. %/
char colder_than{int reference!
{
char addatas /% Holds a character from the A/D. »/
int temperature) /% The current temperature in degrees K. %/

/% Read in the temperature of the bubble memory. #/
addata = ad_read(TEMP4))

temperature = adtoint(addata,MULT_TEMP);
return({ temperature < reference) ? TRUE : FALSE))

/IBHEHHHEHHHHHHHEHEHHHHHHHHEHEHHHHEHHHHEHHHHEHHHHHHEHHHHHEHHEHHHHHHEHEHHHEEE /
/% This function displays a page of data. %/
void display_data_page(struct full_log_page %datapage)

L4
char addata) /% Holds a character of data from the A/D. ®/
int page) /% The desired page number. »/
int halfpage) /% The current halfpage rmumber.¥%/
int iy /% Counts through the valid A/D addresses. %/
int values /% The data from the A/D conwerted into useful
units. %/

printfi"Which page of data do you want to see? nr")j

page = getpagenc()}
if ({bubio(BREAD,page,log _buffer)) ¢
printf("Couldn't read page Zu. nr',page);

187

returni

}

printf{“Contents of page Ox/x = Zd: n r',page,page)}

for (halfpage=0jhalfpage < BLOCKS_PER_PAGE;++halfpage) (
printf("Half page “d: nr t",halfpage)s
dump_clock(&(datapage->half_pagelhalfpagel.clock) 13
show_event(datapage->half_pagelhalfpagel.event)3

/% “adcaption" is defined in file "global.c". »/
for (i=03i < ADPOQINTS3++¢i) (
addata = datapage->half_pagelhalfpagel.atodlily
printf("/-264s=/3.0d=" adcaptionlil,addata);
if (i <= 27 ¢ /% The A/D reading is a voltage, in this case. w/
value = adtoint(addata,(i==2)?MULT_10V : MULT_20V);
printf("/c/2.0d.4£02.0dv ",(i==1)?'-"':'+",
value/100,valuae’Z100))
} 'se { /% The A/D reading is a temperature, in this case. %/
value = adtoint(addata,MULT_TEMP I}
printf("/6.0dK *,value);
)
/% Print two points per line. ¥/
if (10 '= 1 % 2) [| i == ADPOINTS - 1)
printft" nr");

7/ FEF I 6T 6T I T I I 06 36 56 36 9638 36 36 33036 3636 36 36 1636 3 3 36 36 3616 36 DDEDI6 562696 36 JEIE 3636 366 36 36 JE06 206 3636 36 06 36 3¢ JE 16 3933 I3 38/
/% This function causes the “swaeep" to be performed. */
void do_sweep(void)
{
printf("Turn on SSOR and A/D Converter and place SSOR in SWEEP mode. nr")j
logevent(power_write{ ADON} ? CSONAD : CFONAD)
logevent!{power_write(SSDRON) ? CSONSSDR : CFONSSDR)}
logevent{ ssdrmode(SHEEP) ? CSSWEEP : CFSHEEP))
printf{"Hait 10 seconds before starting sweep. nr");
timeout(10,SECONDS)
/% Hait for timeout or for a key to be pressed. »/
while('timeocut(NULL,NULL)) (
if (look_ahead_discardl))
break}
)
printf("Turn on VCO. MWait 13 minutes. nr");
logevent(power_write(VCOON) ? CSONVCO : CFONVCO);
timeout(13,MINUTES)}
while (TRUE)
if (ssdr_status() == OPCOMP) (
logevent(DOPCOMP)3

bresk s

)

if (timeout(NULL,NULL) || look_ahead_discard()) (
logevent(DNOOPCOMP })
breaks

)

)
printf("Sweep phase is over. Turn off VCO, A/D Converter, and SSDR. nr"}}

188

logevent(power_writet VCOOFF) ? CSOFFVCO : CFOFFVCQ)s
logevent(power_write(SSDROFF) ? CSOFFSSDR : CFOFFSSDR)}
logevent(power_write(ADOFF) ? CSOFFAD : CFOFFAD);
logevent(DSWEEP)}

/BBHHHHHHHEHEHHHHHEEHHHHHHHEEHEHHHHEHHHHHEHHHHHHHHHEHHHHHHEHHHHHHHHOHHHHEE /
/% This function performs the Vibro-acoustic experiment. »/
void expmnt(void)
4
char mission_statusy /% Can be DAPUON, DLAUNCH, DOPCOMP, ODNOOPCOMP,
or DABORT. Used to control program flow. */

if (Yinitialize()) ¢
printf({"The bubble memory log is full.

Runing the experiment anyway. nr"))
}

/% Check to see whether we should cperste thae full experiment or not. »/
if ('pagezero~>full_experiment) (

short_experiment();

return;

/% Chack the sweepstarted flag in page zero of the controller's bubble
memory. It's TRUE if the sweep has been started previously,
false otherwise. »/
if (Y(pagezero->sweepstarted)) (
printf("Starting the sweep. nr"))
do_sweep!)}
) else ¢

printf("Sweep was done previously, 30 we're skipping it.nr");

/% Check the launchdone flag in page zero of the controller's bubble
memory. It's TRUE if the launch has already taken places FALSE
otherwise. */

if ('(pagezero->launchdone)}

/% Keep on listening, until you detect either the APU, or the
launch., If you run out of time, assume the mission
was aborted. %/
printf("He haven't launched yet. Listening for the APU. nr")y
misgion_status = listent)
printf("Turning on the SSOR, because listen() detected something.nr")y
logevent(power_write(ADON) ? CSONAD : CFONADI)s
logevent(power_write({SSORON) ? CSONSSDR : CFONSSDR)3
if (mission_status == DAPUON) (
printf("APU is on. Initiate a 10 minute timeout. nr
Placing SSDR in SCROLL mode. nr")y
logevent(ssdrmode(SCROLL) 7 CSSCROLL : CFSCROLL)s
timeout(10,MINUTES)y
while (TRUE) (
if (we_launched() =3 DLAUNCH) (
printf("We launched. nr");
mission_status = DLAUNCH)
break}

189

)
if (timeout(NULL,NULL) || look_ahead_discard()) (
printf("We timed out and are aborting the mission. nr'),
mission_status = DABORT;
logevent(DABORT)3
break;

)
} else { /% Launch was done previously. %/
logevent(PRIORLAUNCH)3
mission_status = PRIORLAUNCH}
printf("Ne have previously launched and are in spsce now.nr
Assume mission has been successfully completed. nr")y
)}
if (mission_status == DLAUNCH} (
printf("Putting the SSDR in LAUNCH mode. n r
Initiating a 3 minute timeout. nr”)s
logevent(ssdrmodae(LAUNCH) 7 CSLAUNCH : CFLAUNCH)
timeout(3,MINUTES))
while (TRUE) (
/% 1f we haven't recorded a completed launch, check the barometric
switch. If it has been triggered, then we should record one. ¥/
if (!'pagezero->launchdone)
baro_switch()}
if (ssdr_status() == DOPCOMP) {
printf("SSDR reported OP COMPLETE. nr'")3
logevent(DOPCOMP)
break}
}
if (timeout(NULL,NULL]) || look_ahead _discard!)) {
printf("SSDR never reported OP COMPLETE. We timed out.nr")y
logevent{ DNOOPCOMP)}
break

}
if (mission_status = DABORT)
post_launch()

/Y HHHEHEENE O HHEHEEEEEEEHEHEEHE I ORI I/
/% This routine reads page 0 from bubble memory in order to initiate the
experiment properly. #/

char initialize(void)
<

int i) /7% A counter which permits more than one attempt

to read the bubble memory. »*/
char power_port; /% Holds the status of the power subsystom. %/

printf("Read from page 0 of the bubble memory.:nr")s
/7% Attempt to read from page 0 up to BTRIES times before giving up. w/
for{iz0)'bubio(BREAD,0,page0_buffer) && i <= BTRIES}++i))
display_page0{pagezeroc))
if (pagezero->page > MAXPAGE) (

returni FALSE)y

190

for(i=203i < BTRIES3¢+¢i) (
if(bubio(BREAD,pagezero->page;log_buffer)) {

printf(“logevent(INITIALIZE)nr");

logevent(INITIALIZE))

power_port=power_status();

if (VCOOFF & power_port) {
printf("Turning the VCO power subsystem off.nr");
logevent(power_write!{ VCOOFF) ? CSOFFVCO : CFOFFVCO)}

)

if (HEATOFF & power_port) (
logevent{power_write(HEATOFF) ? CSOFFHEAT : CFOFFHEAT);

printf("Turning the heater subsystem off. nr")}
)
return(TRUE)3

)
return{ FALSE),

7/ FEFEREIETETEIETE I8 307876 HE I D069 36T 0060636 36 96 36 36 T3 J HTETE TEIEFT I I 036360606 J6 2606 3606 31636 36 96 6. 36 36 3636 396 366 36 4 K36/
/7% This function returns DAPUON if the APU is onj DLAUNCH if the shuttle
has launched; FALSE if neither event is detected, but exit is forced by
the pressing of any key on the terminal. */
char listenivoid)

{
char portcl) /% This holds the contents of NSC810 #1 port c.»/
printf("Turning Matched Filter on. Mait for detection or a keystroke.nr")y
/% Turn on the matched filter, and listen for the APU. If the matched
filter is already on, this command has no effect. %/
logevent(power_write(MATFON) 7 CSONMATF : CFONMATF);
while (TRUE)
if (we_launched() == DLAUNCH)
return{ DLAUNCH }3
portcl = input(READC1)3
if (portcl & APU_ON) (
printf("APU detection occurred. nr")s
logevent(DAPUON);
returnt DAPUON)3
)
/% Exit this function if any key on the terminal is pressed. »/
if (look_shead_discard()})
return({ DUSERNOAPU)y
)
}

7/ FEEREIES 6 R 6 TT T I S I 36 I 38 H08 S IS HEHEHHEHHHEHE R HEHE/
/% Log an event. This function returns TRUE if the event was logged

191

satisfactorily, FALSE otherwise. %/
char logeventichar event)

<
int i3 /% A counter. %/
char *buffer_ptrs /% A pointer into the log page buffer. %/
char fulls /% TRUE when all available pages are
used up, */

buffer_ptr = log_buffer) /% Make buffer_ptr point to the start of
the log buffer. %/
full = pagezero->page > MAXPAGE:

/% 1f the bubble memory is full, there's no point in going on. Return. »/
if (full)
return({ FALSE }}

/% Blark out the buffer if this is a new page. This guarantees that
old data won't reside in the upper half-page when the new page is
written to the bubble memory. %/

if {pagezero->halfpage == 0) (

for (i=03i < PAGELENGTH3;++i) (
t(®buffer_ptr++) = 0x003
)

/% Fill the current log block with new data to be logged. %/

clockread!(
&
log_page->
half_pagelpagezero->halfpage).clock
)
)3
log_page->

half_pagelpagezerc->halfpagel.event = event;

/% Read the A/Ds and put their contents in the log, too. %/
for (i=03i1 < ADPOINTS3i++} (
log_page->
half_pagelpagezero->halfpage).atodlil
2 ad_read(adportliil)y

if (event =x CSSWEEP || event == CFSHEEP) (
pPagezero->sweepstarted = TRUE)
)
if (event == DPRESSURE) (
pagezero->launchdone = TRUES
)
/% Hrite the new page of data to the bubble memory. %/
bubio(BHRITE ;pagezero->page;log_buffer);
it (pagezero~>halfpage >= BLOCKS_PER_PAGE - 1) {
ifl(++(paguzero->pege)) > MAXPAGE) ¢
printf("Bubble memory is all used up.in.r");
return(FALSE))
)
pagezero->halfpage = 03
} else {

++(pagezero->halfpage))

/% Update page 0 in the bubble memory. %/

bubio(BHRITE ,0,page0_buffer))

return(TRUE); /% 1f you got this far, you Know you haven't yet
run out of bubble memory. Return TRUE to show
successful logging of an event. »/

7 F A I I NN I I I O R I/

/7% This routine provides a meru of choices for examining or changing the
contents of the bubble memory. %/

void log_merutvoid)

<
char dataj /% Holds a character from the keyboard. %/
/% Read page 0 from the bubble memory. #*/
if ('bubio(BREAD,0,pageld_buffer)) {
printf{"Couldn't read page 0. nr");
returny
)
/% Display the mernu repetitively until 2 is chosen. ®*/
while (TRUE) (
printf("
A Display page 0.nr
B Display a page of the log.nr
C Alter the contents of page 0.nr
Z Exit this mernu.nr"
)3
data = tolower(termin());
printf("Zcnr",data)s
switch (data)
case 'a':
display_pageO(pagezero);
break}
case 'b':
display_data_page(log_page))
breaks
case 'c':
alter_pagel(pagezero);
break
case 'z':
return;
default:
printf("Use a valid letter please.'mr'))
)}
)
)

7/ SIS I TEIEIE I T S S S H I I L/
/% This routine monitors the temperature of the bubble memory used for
logging data and operates the heaters to keep the temperature within

193

the desired range. %/

void monitor_heaters(void)

<

char power_port) /% Holds the status of the power subsystem. ®/
power_port = power_status()}
/% If it is cold enough, and if the hester is not yet on, turn it on. %/

if (colder_than(MIN_DESIRABLE_TEMP) && (HEATOFF & power_port)) (
printf("Turn on the heaters. nr")s
logevent(power_write(HEATON) 7 CSONHEAT : CFONHEAT)S
returns

/% It is is warm enough, and if the heater is already on, turn it off. »*/
if (('colder_than(MAX_DESIRABLE_TEMP)) %& (HEATOFF & power_port)) (

printf("Turn the heaters off. nr")s
logevent(power_write(HEATOFF) ? CSOFFHEAT : CFOFFHEAT)

7 TN IEIEFIE I I IIIIEIEIE I 36 JEFEIETEIETEIEIIE 236 JI J626 36 3 I I JEI 36 3636 FEIEI I 2696 36 36 36 36 36 3636 36 I I HIII W J 3¢ /
void post_launch(void)

{

printf("We're shutting down all power.nr"):
shut_down()}
while (TRUE) (
printf("Reading A/Ds every 5 minutes. nr")j
timeout(5,MINUTES J3
while (!timeout(NULL,NULL)) (
monitor_heaterst)
if ('pagezero->launchdone)
baro_switcht)
if (look_ahead_discard(})
break}
)
logevent(READAD)
if (voltages_low()) ¢
printft'Voltages are too low. Terminate the experiment. nr')j;
logevent(TERMINATE)3
break)

/IHHHHHHEHHEEHHHHHHEHHHEHEHHHEHEHHHHEHHHHEHHHHHHHHHHHEHHOHHREREHHEHEHHOHHEH /
/% This routine performs the RECORD phase of the abridged experiment. »/
void recordtvoid)

<

printf("Entering RECORD mode. nir\

Turning on SSDR and A/D Converter. n r")}

/% Store current time in page 0. This is s record of the time when
RECORD mode last was begun. The next time logevent() is called,
the data will actually be stored in page 0. #/

194

clockread(&(pagezero->RECORD_start_time));
logevent(power_write(ADON) ? CSONAD : CFONAD)s
logevent(power_write!SSORON) ? CSONSSDR : CFONSSDR)}
logeventtssdrmode(RECORD} ? CSRECORD : CFRECORD)}
printf(“"Initiating a 20 minute timeout. ner’");s
- timeout(20,MINUTES)
while (TRUE) ¢
/% 1f we haven't yet launched, check to see if the barometric
switches have fired or not. #/
if ('pagezero->launchdone) {
baro_switch()y

)}
if (ssdr_status() == OPCOMP) (
logevent(DOPCOMP)3

breaks

}

if (timeout(NULL,NULL) |} look_ahead_discard()) {
logevent(DNOGPCOMP)3
break}

b

b}

printf(“Record phase is over. Turn off A/D Converter and SSDR. nr" s
logevent(power_write{SSOROFF) ? CSOFFSSDR : CFOFFSSDRIs
logevent(power_write(ADOFF) ? CSOFFAD : CFOFFAD)}

/363636 3636 363636 36 3636 26 363 D6-36 36 36 26 I FEEIE TN I HIEI 06 36 3636 36 636 36 36 26 36 36 JIE HIEIIE N IIE I I HI I NI NN W NN/
/% This routine operates an abbreviated version of the experiment which
avoids doing the "sweep", and uses only RECORD mode in the SSDR. */
void short_experimentivoid)
{
char showflag; /% This flag is TRUE to make bad_idea_to_record!)
display computed times; FALSE otherwise. %/
if (pagezero->launchdone} {
printf("We have previocusly launched and are in space now. nr")y
logevent{ PRIORLAUNCH)3

whilel 'pagezero->launchdone) {
/% 1f RECORD mode was initiated too recently, we don't
want to try it again. Wait for a suitable interval to elapse before
continuing. bad_idea_to_record() knows how long this is.
Alternatively, the user can press a key to avoid waiting. #*/

showflag = TRUE; /% Have bad_idea_to_record() display computed
times the first time through. »/
while (bad_idea_to_record(showflag)) {
showflag = FALSE)
if (look_ahead_discard())

break)
)
/7% Kait for indications of a launch. #/
listen()y
/% Enter RECORD mode. #/
recordt!))

195

if (!pagezero->launchdone)
baro_switch()}
}
/% Now that we're in space, perform post-launch operations. »/
post_launch()

/FHBBHEHEHHHEHEHEHHHHHEHHHEEHEHHHEHEHBHHHHHHEHEHEHEHEHE I HHHHEHEHHRHHEH
/7% This function displays the meaning of an event code. %/
void show_eventichar event)
<
/% Yevent" is an index into the following array of messages.
It is one of the event codes given in the "vibro.h" file.
I1f someone changes it, someone had better change these messages to
correspond, or the results will be disappointing.»/
static char *messagel] = (
“Initialization. nr",
"Sweep-mode command issued. ner",
"'Sweep-mode command accepted. n.r",
"Sweep-mode command not accepted. nr",
“Sweep-mode completion detected. nr*,
"APU detected. nr",
“Scroll-mode command issued. nr",
"“Scroll-mode command accepted. nr',
"Scroll-mode command not accepted. nr",
"Launch detected. nr",
“Launch-mode command issued. nr",
"Launch-mode command acceptednr”,
“Launch-mode command not accepted. nr'",
“"Barometric switch detection.nr",
“SSDR did not give OP COMPLETE within the allotted time.nr",
"*SSDR reported OP COMPLETE. nr",
"Mission abort inferred. nr",
"SSDR ON command issued. nr",
“SSDOR ON command succeeded. nr",
“SSDR ON command failed. nr“,
"SSDR OFF command issued. nr",
""SSDR OFF command succeec~d. nr”,
"SSDR OFF command failed. nr",
"VCO OFF command issued. nr",
"VCO OFF command succeeded. nr",
“VCO OFF command failed. nr",
"VCO ON command issued. nr",
“VCO ON command succeeded. n r*,
"VCO ON command failed. nr",
"A/0 QFF command issued. nr",
"A/D OFF command succeeded. n.r",
"“A/D OFF command failed. n.r*,
"A/D ON command issued. nr",
"A/D ON command succeeded. nr",
"A/D ON command failed. nr",
“MATCHED FILTER OFF command issued. nr",
"MATCHED FILTER OFF command succeeded. nr",
“MATCHED FILTER OFF command failed. nr",

196

“MATCHED FILTER ON command issued. nr",
“MATCHED FILTER ON command succeeded. nr',
“MATCHED FILTER ON command failed. nr",
"BUBBLE MEMORY HEATER OFF command issued. nr®,
"BUBBLE MEMORY HEATER OFF command succeeded. nr',
"“BUBBLE MEMORY HEATER OFF command failed.nr",
“BUBBLE MEMORY HEATER ON command issued. n.r",
"BUBBLE MEMORY HEATER ON command succeeded. n.r',
“BUBBLE MEMORY HEATER ON command failed. nr",
“READ A/D command issued. nr",
"Experiment terminated. nr",
"User interrupted the wait for APU detectionnr.",
"*Invalid command. nr",
"Launch occurred before the last program initialization.nr",
""RECORD mode command to SSDR succeeded. nr'",
"“"RECORD mode command to SSDR failed. nr.*

)3

printfl.sessagelavant]);

7/ FTETEEIII I I 6T HTE NI T I 26 36 363 36 2636 3696 96 366 36 366 369 2636 36 36 H56 696 6 96363636 36 3696 336 36 69696 36 263636 JE J 26 36/

/% This routine removes power from any relays which have it, and logs the
fact. =/

void shut_down(void)

{
char power_port; /% Holds the status of the power subsystem. %/
power_port = power_status()3
/% Remove power from all subsystems which currently have power. %/
if (SSDROFF & power_port)
logeventipower_write!{SSDROFF) ? CSOFFSSDR : CFOFFSSDR)
if (VCOOFF & power_port)
logeventipower_write(VCOOFF) 7 CSOFFVCO : CFOFFVCO}3
if (ADOFF & power_port)
logevent(power_write(ADOFF) ? CSOFFAD : CFOFFAD))
if (MATFOFF & power_port)
logevent(power_write(MATFOFF) ? CSOFFMATF : CFOFFMATF);
i¥ (HEATOFF & power_port)
logevent(power_writel HEATOFF) ? CSOFFHEAT : CFOFFHEAT);
}

/RIS I I I3 566 X6/
/% This routine removes power from any relays which have it. It does not
log the fact. »/
void shut_down_no_log(void)
<
char power_port) /% Holds the status of the power subsystem. %/
power_port = power_statust)}
/% Remove power from all subsystems. »*/
if (SSDROFF & powar_port)
power_writel(SSDROFF)}
if (VCOOFF & power_port)
power_write! VCOOFF)}
if tADOFF & power_port)
power_write(ADOFF)}
if (MATFOFF & power_port)
power_write(MATFOFF)}

197

if (HEATOFF & power_port)
power_write(HEATOFF)}

/ FHHHEHEHHHHHHHH RO I HHHEHHHEOHEORE N
/% This routine sets the SSDR's mode. */
/% “mode" is a coded SSDR mode. See file "vibro.h". wm/

char ssdrmodel(char mods)

<
int i /% A counter. ¥/
char status) /% Hexadecimal status, used for debugging. »/
/% Repeat the following code several times if the SSDR does not
immediately appear to be successful. */
for(i=03i < TRIES;++i)
output(SSDROUT ,mode) /% Output a mode command to the SSDR. »/
/% WHait for the SSDR to respond. */
delayt2)s /% Dalay 2 x 10 ms to get a valid
status, »/
status = ssdr_status()}
if (status == NORMOP)
/% Adding 1 to a mode gives the code for a successful operation. %/
printf("SSDR returned NORMOP in response to command Ox/x. n r',
moda)
return({ TRUE)
}
/% The SSDR did not confirm the propsr mode was set.
Try again. After you give up in disgust, signal
failure by returning FALSE. #/
)}
printf("“SSOR did not return NORMOP in response to command 0x/x. n r',mode))
returni{ FALSE)}
}

/PP I H NI I I I NI NI I IIIIEIE HII6 3 063626 J6 FEIEIEIE I I I FEIEIEIEJEIEI6 36 2 36 36 I 3636 336 J I I3 /
/% This routine gets the SSDR's status. »/
char ssdr_status(void]}
<
return(input(SSDRIN))}
b]

/I HHHHHHHHHHHHHHHHHEHHHHEHHHHHHHHHEHHHHHHHHHHEHHHEOHHEHHHHOHEHHHHHRNHHERHE /
/% This function returns TRUE if the power supply voliages are too low)
FALSE, otherwise. %/
char voltages_low(void)
<
int voltage; /% Holds the voltage in hundredths of a volt. w/

char addata) /% Holds the voltage as read by the A/D. w/
/% Read in the voltage on the 10V bus. %/

addats = ad_read(VOLT2)3
/% Convert to hundredths of a volt. »/

198

voltage = adtoint(addata,MULT_10V)}

if (voltage < MIN_VOLTAGE_10) (
returni TRUE)y

)

returnt FALSE)3

ZHHEHHHHHHEHHHEHHHEHHEHHHHHHHHHHEHHHHHHEHHHOHHEHHHEHHHEHHEHHBOHHHHHHEHEHHEE /

char we_launched({void)
£
char portdatas /% Holds the port data. %/

/% Check to see if the barometric pressure switch tripped. »/
baro_switch()}

portdata = input(READC1);

if ((VIB_ON | BARO_ON) & portdata) {
printf("Launch detected. Turning matched filter off. nr")y
logevent(DLAUNCH)3
logevent(power_write{MATFOFF) ? CSOFFMATF : CFOFFMATF);
return (DLAUNCH)S

}

return({ FALSE)}

Q. FILENAME FPUTC.C

/7% fputc.c */

#include "inout.h"
#include "vibro.h"
#include "expmnt.h'
#include "newio.h"

int fputc(int chr, void *device)}

/% Bit 0 of the serial port is TRUE if the serial port is ready to write
a character; FALSE otherwise.
Bit 1 of the serial port is TRUE if the serial port is ready to read
a characterj FALSE otherwise. %/

struct rs232c {
unsigned int :63
unsigned int read_ready:1)
unsigned int write_ready:1)

b ¥}

/% Implementation of fputc() as described in the Uniwere Compiler menusl.
For the NSC800 controller, there is only one valid output device, namely
the RS232C terminel. The variable "device" is therefore ignored.

This module must be place in uniliblibc.a using the uar.exe utility. w/

int fputctint chr, void ndevice)
<

199

struct rs232c portdatas
char port_status)

/% Allow the user to interrupt the display of data by use of control
characters. */
allow_ctrl_interruptst)s

/% The UNIWARE manual specifies that this function must return -1
if it cannot output a character. I1If there is no terminal attached,
this is the case. w/

if (!checkprt())

return(-1}

do {

/% Keep getting the status information for the RS232C data port
until it is ready to sccept dats. %/

port_status=input(PRTCTRL)}

portdata =z ®#{struct rs232c *) gport_status)

)} while ('portdata.write_ready);

/% Otherwise, cutput the character and return it. »/

output(PRTDATA,(char) chr))

returntchr)}

R. FILENAME GLOBAL.H

/% This file contains external prototyping declarations of data used globally
throughout the control program. */

extern char prtcomnected;

extern char tempbuffer[PAGELENGTH])
extern struct datetime clock;

extern struct idatetime waketimes
extern struct power_port_fmt power_ports
extern char adport{ADPOINTS];

extern char page0_buffar{PAGELENGTH]}
extern char log_buffer{PAGELENGTHI;
extern struct pageOdata *pagezero)
extern struct full_log_page %log_pages
extern char *adcaptionl]y

S. FILENAME GLOBAL.C

/% global.c n/

/% This file contains the declarations of global variables needed by
the control program, %/

#include "vibro.h"

char prtcornected; /% TRUE {f there is a terminal attached, FALSE
otherwise., %/

char tempbuffer[PAGELENGTH]3 /% A temporary buffer. %/

struct datetime clock) /% The most recently read time will be

stored here. %/

struct idatetime waketime; /% The most recently read integer version of
time will be stored haere. #/

struct power_port_fmt power_port)

/% This is a list of A/D chamnels in use, and what they're used for.
Make sure ADPOINTS = tha rumber of transducers in use. %/
char adportlADPOINTS] = (
VOLTO, VOLT1, VOLT2,
TEMPO, TEMP1l, TEMP2, TEMP3, TEMP4, TEMPS, TEMPé
b

char page0_buffer{ PAGELENGTHI) /% A buffer for hubble memory page 0. %/
char log_buffer{PAGELENGTH])3 /% A buffer for bubble memory log data. »/

struct pageOdata *pagezero} /% A pointer to the page0_buffer. »/
struct full_log_page *log_page; /% A pointer to the log_buffer. #/

/% The following captions should match the A/D port assignments,
in order. See the vibro.h header file.¥/

char *adcaption{l = {

"+20V Bus'",

"-20V Bus",

"+10V Bus",

"T, shelf above BMC",

“T» underside of speaker",

"T, shelf above batteries",

"7, batteries",

"T, controller backplane",

"“T, card 8 of BMC",

"T, card 9 of BMC"
bR

T. FILENAME INITIAL.H

/% This file contains external prototyping decalarations for all functions
in "initial.c". #/

extern void inithardware(void))

U. FILENAME INITIAL.C
/% initial.c w/

#include “vibro.h"

Rinclude "inout.h"

$include "newio.h"

void inithardware(void);

201

ZHEHHHHHEHHHEHEIHEHHHEHHEHEHHE RO HHHEHHEHHHHHHHEHHHEHHE RN/
/% This routine initializes the NSC810A ports. »/
void inithardware(void)

<

output(MDR1,0%x00))

output{ DDRAL,0xff)}

output(DDRB1,0xff))

output!{ DDRC1,0x30)}
output(TM01,0%x00);

output(TMO1,0x25))

output(TOLBL1,0x07)3
output(TOHB1,0x00)}

output(STARTO01,0x0013

output(MDR2,0x00);

output(DDRA2,0x00)}

output{ DORB2,0%00)}

output(DDRC2,0x31))
output(TMO2,0x00)3

output(TMOZ,0x25))

output!{ TOLB2,0x01))
output(TOHB2,0%00)3

/%

7%

V4]

/%

/%

Vs]

/7%
/%

/%

/%

/%

/%

/%

/%

/%

/%
/n

A 000 in the Mode Definition Register

of NSC810 #1 puts port Al into basic I/0
mode. */

Set port Al to output.

Al is used to output command codes to

the SSDR. »*/

Set port Bl to output.

Bl is used to send command codes to the
power subsystem. %/

Set port Cl1 to input/output.

Bits sre defined in vibro.h ¥/

Stop timer 0 of NSC810A ¥#1. You must do this
before changing the timer's mode. */

Set timer mode to generate square waves
without pre-scaling, and with single-
precision selected, meaning only the low-
order byte is ever read. %/

Set low-order and high-order byte for timer. ®/
The modulus is thus 7. After 2%(7+1)
cycles, the timer is reloaded. Since the
NSC800 clock has a frequency of 64,9152 Mhz,
and this is divided by 2, the timer produces
one pulse every 6.51 mus, for a 153.6 KKz
signal. This signal is fed to the UART where
it is divided by 16 to give a 9600 BAUD clock
for serial communications. »*/

Restart timer 0 of NSC810A ¥l by writing
anything to it. %/

A 0x00 in the Mode Definition Register

of NSC810 #2 puts port A2 into basic 1/0
mode. %/

Set port A2 to imput.

A2 is used to read status codes from the
SSDR. »/

Set port B2 to input.

B2 is used to read relay position codes
from the power subsystem. ¥/

Set port C2 to irput/output.

Bits are defined in vibro.tw/

Stop timer O of NSC810A #2. You must do this
before changing the timer's mode. #/

Set timer mode to generate square waves
without pre-scaling, snd with single-~
precision selected, meaning only the low-
order byte is ever read. w/

Set low-order and high-order byte for timer., »/
The mochilus is thus 1 decimel. After 2%(1¢l)
cycles, the timer is reloaded. Since the
NSC800 clock has » frequency of %.9152 Mhz,
and this is divided by 2, the timer produces
one pulse every 1.628 mus, for a 614.4 KHz
signal. This signal is fed to the A/D
converters. For a 640 KHz clock, the A/Ds

202

will complete a conversion in about 100 mus.
We are not far from 640 KHz, so should get
comparable performance. ¥/
output(START02,0%x00)s /% Restart timer 0 of NSC8l0A #2 by writing
anything to it. »/
output({BCLRC2,0x30)5 /% Ensure that power is not applied to the
bubble memory and that a reset is spplied to
it. This should be done when the NSC810 first
receives power, but we leave nothing for
granted, %/

V. FILENAME INOUT.H

/% This file contains external prototyping declarations for all functions
in "inout.c". ®/

extern void allow_ctrl_interruptstvoid)y
extern void dumplunsigned int address, unsigned int lengthls
extern char gethex(void);

extern unsigned int gethexint(voidls
extern int getintiveid)s

extern int getpagenolvoid)y

extarn char look_ahead(char ¥character)s
extern char look_ahead_discardtlvoid))
extern void portdumpichar %*string))
extern char termin(void)s

extern void testinputtivoid);

extern void testoutputlivoid)s

W. FILENAME INOUT.C
/% inout.c ¥/

#include "vibro.h"
#include "convert.h”
ginclude "newio.h"
#include "bubble.h"
#include “expmnt.h"
sinclude "global.h"
#include "main.h"

void allow_ctrl_interruptstvoid)s
void cdumpl(unsigned int address, unsigned int length))
char gethex(void))

unsigned int gethexint(void))

int getint(void)

int getpagenoivoid))

char look_shesd(char ®character))
char look_shead_discard(void))
char terminivoid);

void testinput(void)y

void testoutputivoid)s

/% console_buffer is shared by look_ahead() and termin(). I look_shead()

reads a character in, it puts it in the buffer and sets the
console_data_available flag to true.

terminl) will look first in the buffer for

input from the console. If it finds any, it will set console_data to false
snd return the character in the buffer. Otherwise it will try to get a
character from the console in the usual way. %/

static char console_buffer)
static char console_data_svailable = FALSE)

/mmmmﬁunmmnmmm*mml
/% This routine processes the special characters CTRL S and CTRL Y from

the keyboard. »/

void allow_ctrl_interrupts{void)

{

char conchars /% The character of console input data itself. »/
char char_available} /% TRUE if there is a character available for
input from the consoles FALSE otherwise. %/

/% 1f there is a S character in the RS232C input port, then read it
in using termin() and loop until another S is given. Thus, S
serves as a toggle for stopping and starting output. */

/% See if there is a character available,
and if so, put it in conchar.®/
char_available = look_ahead(&conchar)s

if (char_available) (
switchl(conchar) {
case CTRLS:
case CTRLY:
/% Call termin() to empty the buffer and handle the
control character. */
termin()y
break}
default:
break

/FHHHHHHHHEHHEHHEHHHHHHHHHHHHHHEHHHHHHHHHEHEHHEEHHEHEHHEHHHHHEHEHEHEHHEHHREHE /
/% This routine produces a hexadecimal dump of any section of memory. %/
void dumplunsigned int sddress, unsigned int length)

{

unsigned int i) /% Points to the current byte being dumped. ®/
char asciilDUMPWIDTH+11]l; /% Contains the ASCII equivalent of each byte. #/

ascii{DUMPHIDTH] = NULL3 /% Make sure ascii has a null delimiter
to look like a C string. »/
/% Corwvert length to a multiple of DUMPWIDTH. %/
length = ((length ¢+ DUMPWIDTH-1)/DUMPWIDTH) »* DUMPWIDTH)
for (is0)i<lengthsie+) (
if (0==i/DUMPRIDTH) (/% Dump the ascii version and start a
new line every DUMPWIDTH characters. #/

if (i > 0) ¢
printf("/Zs nr",ascii))
}
/% Also, dump the current address. »/
printf("Zs: “,uitoh(address+ill;
)
/% Put extra spaces in the middle of each line. »/
if (0==ziZ(DUMPWIDTH/2) 28 0 '= iZDUMPWIDTH)
printf(" ")
)
printf("/s ",ctoh(®(char %) (address+i)}); /% Dump each byte individually. »/
/% Insert the current character in the string “ascii".»/
/% 1% it's not printable, replace it. »/
asciiliZDUMPWIDTH] = %(char %) (address+i);
if tasciil i/DUMPWIDTH) < SPACE || asciil iZDUMPWIDTH! >= DELETE) {
asciiliZDUMPWIDTH] = *.°')

}
)
/% Make sure ascii is printed again at the end of the last line. »/
if (i >0)¢(
printf("/Zs nr",ascii)s
}

7/ P66 36 I 263 I 6 I HIEI I TEI I 26636 56 636 36 2 36 396 36 I 6 36 36 296 36 D66 363666 3. 36 36 236 3 26 396 6 96 36. 6. 6. 3636 336 /
/% This routine gets a hexadecimal byte from the terminal.®x/
7 FEFETETEIEIIE 6T I 96 269696 369 J6 I 36 FI- I 26T T I I8 66 369636 J DD IEIEIE I I 36 3962 2 J496.36 36 36 7636 36 6 3 36 30606 36 36 I HHEIE 3 J 06 2 2696/
char gethex(void)
{

int i3

char string{HSTRLEN + 113

stringl HSTRLEN] = NULL})
for (i=0;3;i < MSTRLENs++i) {
stringli]l = tolower(termint));
if tstringli) == B8S) (
i-=2
if (i < -11¢(
i=-1
) else (
printf("b b");
)
contirnue)
)
printf("Zc",stringlil)y
if (stringlil >= 'a' 82 stringli) <= '¢*)
continue)
if (stringlil >= '0' 22 stringli) <= '9')
continue
stringli] = NULLS
break)
)
returniatohistring));

205

7/ HEHBEHHHHHHHHHEHEHHEEHEHEEE NI 3 X I /
/% This routine gets a hexadecimal word (two bytes) from the terminal.»/
/TN I NI NI I NI IEIIII I IIIEIIE T FEIEIEI I I IEIE I FEI I I I IE D J 6 H24 I/
unsigned int gethexintlvoid)

<
int i)
char stringl HEXINTSTRLEN+11s
string[HEXINTSTRLEN] = NULL}
for (i=03i < HEXINTSTRLENs++i) (
stringli) = tolower(termin()))
if (stringlil == BS) (¢
i-=2
if (i c-11¢(
i=-1s
} else (
printf("b b")s
)
continue}
)
printf("Zc",stringlil)s
if (stringlil] >= 'a‘' 88 stringlil] <= '§')
continues
if (stringlil >= '0' 22 stringli) <= '9")
continues
stringli] = NULLS
break
b
returniatohexintistring))s
}

/AT FIE I I I TN IEIE JIEIEIIEI I3 = 3§22 36 66 T30 36962636 DI T 36 36 36 36 3636 36 206 2636 D6 2 36 36 636 363636 JH 36 JE D6 269 36 36 2636 /
/% Gat an integer from th. terminal. »*/
int getint(void)
4
int i3
char stringlSTRLEN];

stringlSTRLEN] = NULL})
for (i=203i < STRLENj3++i)
stringli] = termin()y
if (stringli] == BS)
i-s2
if (i < -1) ¢
i=z-)
)} else ({
printf("b b")3
)
continue)
)
printf(»Zc”,stringlil);s
if tstringlil] < '0' || stringlil) > '9')
stringlil] = NULL,
break)

206

return(atoit(string))s

7 TR I I NI I HEHERIHEHHEEHHE %/
int getpagenotvoid)
4
int pages
char s{STRLEN]} /% Storage for itoal), %/
itoa(MAXPAGE ,s)3
printf("Input the bubble memory page mumber (0-/Zs decimal): "“,s)}
while (TRUE) ¢
page = getint()y
printf("nr")s
if (page >z 0 && page <= MAXPAGE)
break}
itoa(MAXPAGE,s)}

printf("Page must be in the range (0-/s decimal): ",s)}
)

returnipage)}

/3636362336 362636 3 JEHE T I FIEI 6 DI H I I I I I HEIETEI NI NI I I I I H I I N2/
/% This function checks to see if a character is available through termin().
It places the character, if any, in the location pointed to by

‘character'. It returns TRUE if there was a character, FALSE otherwise. %/
char look_ahead{char *character)

<

/7% 1f there is no terminal attached, return FALSE. »/

if (tcheckprt(}) {
return{ FALSE)}

)

/7% 1% the buffer is already full, return it's contents,

but don't empty it. %/

if (console_data_available) (
xcharacter = console_buffer)
return{ TRUE)3

)

/% Check the RS232C port to see if there is data available.

Bit 1 will be 1 when data is present. »/

if (input(PRTCTRL) & PRTROY)

/% 1f there is data, store it in the buffer and let termin() know
about it by setting the console_data_available flag. %/

xcharacter = console_buffer = input(PRTDATA);
return{console_data_available = TRUE))

)

return(FALSE)y /% No dats was present. %/

}

7/ SHHEHHHHHHHHEHHHHEHHHHHHHHHEHHHHHHHHHHHHBHHEHHHHHHHOEHHHEHHEHHHHEHHBHHHE
/% This routine checks to see if a character has been entered from the
keyboard. If so, it discards the character and returns TRUE. If not,
it returns FALSE. #/
char look_shead_discard(veid)
L4
if (look_ahead((char #) NULL)) (

207

termin()y

return(TRUE)3
) else

returnt{ FALSE)}

/IBHBHEEHRHEHRHHHHHEHHHEHBHHEHHIHBHHHHHHEHHHEHHHHHHEHEHEHHHHHEHHOOHHHOHEHE /
/% This function obtains a character from the keyboard. %/
char termin(void)

<

static char allow_meru_call = TRUE}

/% '‘allow_menu_call' is true if menu() can be called from termin()},
FALSE otherwise. It can be called from termin() once’ subsequently,
it must first return control to termin(). Thus, one recursive entry
into menul) is permitted at a time. The experiment can be monitored,
but only at one subordinate calling level and no more. »/

char waiting_for_ctls:

/% This variable is true if an odd number of CTRL-S characters has
been accepted. No characters can be accepted from the keyboard
until an even number of them have been received. However, CTRL-Y can
be accepted, in which case menu() will be called at once. */

char ctrl_valid_data; /% This is TRUE if look_ahead() already filled
the buffer; FALSE otherwise. %/

waiting_for_ctls = FALSE:
ctrl_valid_data = console_data_available)

/% Loop continuocusly until an acceptable character has been received. ®/
while (TRUE) {
/% 1§ the buffer is empty, then wait for a character to be entered.
It could have been filled by look_ahead().%/
if (!console_data_available) {
while (TRUE) (
/% Check the RS232C port to see if there is data available.
Bit 1 will be 1 when data is present. Wait for data. %/
if (input!{PRTCTRL) & PRTRDY) (
console_buffer = input(PRTDATA))
break;

)

)

/% Now that console data has been read, set the availability flag
FALSE so that if it becomes necessary to resd another character,
you can do so. %/

conscle_data_available = FALSE)

switch (console_buffer) {

case (CTRLS):
/% Toggle the waiting_for_ctls flag. As long as this flag
is true, you can't get out of termin(). w/
waiting_for_ctls = 'waiting_for_ctls)
if ((waiting_for_ctls) &8 ctrl_valid_data)
returniconsole_buffer);
break}

208

case (CTRLY):
/% You can execute a CTRL-Y even if a CTRL-S is pending.
The effect is to cancel the CTRL-S. »/
waiting_for_ctls = FALSE;
if (allow_menu_call) (
allow_menu_call = FALSE)
/% Tell meru() not to start the experiment. This is
only permissible when main{) is the calling function. %/
menu(TEXPERIMENTOK)3
allow_menu_call = TRUE;
}
if (ctrl_valid_data)
returniconsole_buffer))
break
default:
/% Ignore this character if you're waiting for a second CTRL-S. %/
if (waiting_for_ctls) {
breaks
}
returniconsole_buffer};

7/ T T TEIE 6T IEIEI6 I HEEIEI6 T 36 36 I 36 J6-36 JE-IIE 6 I I6 36 TE 3T I 336 96 36 J6 36 J6 I6 J6 T IIE T 36 6 96 26 7636 I 26 J-T6 3 36 3636 96 96 36 36 96 9696 36 36 36 3¢ 36 3 34 96 /

/% This function allows the user to read data from any port. %/
void testinput(void)

¢

int ports /% Port number to be entered from the keyboard.¥/
char datas /% Data to be read from that port. */

printf("Specify port address to be read (in hexadecimal): '3
port = gethex(); /% Gaet the port address. »/

printft" nr");

data = input(port); /% Read from the port. »/

printf("Data from port tin hexadecimal): /s nr",ctohl(data))s

/T HHEHHHHHHHHHE R HHEHHHHHHHHEHEE O HHHEHHEEEHHE HOHEEEEHE
/% This routine outputs a character to a specified port. #/
void testoutputivoid)

{

int port) /% The port address. */
char datas /% The data to be sent to the port. %/

printf("Specify port address to be written to (in hexadecimal): ")j
port = gethex!) /% Get the port address. #/

printf("nr");

printf("Specify the data to be sent to the port (in hexadecimal): ")}
data = gethex!)

output(port,data)s

209

X. FILENAME MAIN.H

/% This file contains external prototyping declarations for all functions
in "main.c". #/

extern void memory_dump(void);

extern char menu(char experiment_flag);
extern void program(void);

extern void testiolvoid);

extern void mainivoid);

Y. FILENAME MAIN.C

/% main.c #*/

#include "version.h"
#include "vibro.h"
#include "bubble.h"
#include "inout.h"
#include “power.h’
#include “convert.h"
#include "initial.h"
#include "clock.h"
#include "newio.h"
#include "global.h"
#include “expmnt.h”

void memory_dump(void)s

char menulchar experiment_flag);
void testiolvoidls

void mainivoid)}s

P T Y 4
/% This routine lets the user produce memory dumps for any section of memory.%/
void memory_dump(void)
{
unsigned int address; /% Will hold thae starting address of the dump.»/
unsigned int length) /% Will hold the number of bytes to dump.*/
while (TRUE) (
printf(""Please specify address: "))
address = gethexint()
printf(" n.rPlease specify mmber of bytes to dump (0 to quit): ")
length = gethexint();
printf(*“ne")y
ifllength == 0)
break}
dump(address,length)s

)
/IHHHHHHEHHHHHEHHHHHHHHHHHHHEHHHHHHEHHHHHHHHHHHUHEHHHEHEHEHHEHHHHOHEHEE
/% This routine is the highest level of all the diagnostic wenus.
It will not permit the experiment to be run unless the experiment_flag
is TRUE, =/
char meruichar experiment_flag!}
{

210

NHNHIXOTMOOW®

char datas /% A character read from the Keyboard. #/

int i) /% A counter. %/
char addata) /% A value read from the A/D converter. */
int values /% The A/D reading converter to useful units. %/

while(TRUE) (
versiont);
printf("
Software reset. nr
Realtime clock functions..nr

Power relay switching functions.inr|

Bubble memory test functions..n.ri

A/D converter functions. nir:
Run experiment. nr:
Perform port 1/0. nr

Display contents of controller memory. n.r
Examine or change the data logged in the bubble memory.nr:

Exit this menu. nr")j

/% Read in a character from the Keyboard, convert it to lower case,

and display it. »/
data = tolowerf termint));
printf(“Zc nr",data)s
switch (data) €

case 'a':

asm(" jp 0"y
break}
case 'b':
rtet)y
breaks
case 'c':
pwrcent()y
break
case ‘'d':
bubmerul(13

breaks
case 'e':

/% To perform a software reset, jump
to address 0. */

/% Call the real time clock functions. »*/

/% Call the power control functions. ®/

/% Call the bubble memory testing
functions. ®*/

/% Display the A/D data. %/

for (i=03i < ADPOINTS;++i) (
addata = ad_read(adportlil)
printfl“z-24s243,0d=" ,adcaptionlil,addata))

/% If § <= 2, then the A/D reading is a voltage. %/

if (i <2 2) (

value = adtoint(addats,(is=2)?MULT_10V : MULT_20V})
printf(“Zc/2.0d.%02.0dV ",liz=z1)?'=-"':"'+’,
value/100,value’100))

/% Otherwise, the A/D reading is a temperature. %/

) else {

value = adtoint(addata,MULT_TEMP))
printft"/6.0dK *,value))

211

/% Print two points per line. %/
if ((0 '= 41 Z 2) |)] i == ADPOINTS - 1)
printfi" nr");
)
breaks
case ‘'f': 7% Execute the experiment, unless it
is currently in a suspended state. ¥/
if (experiment_flag) (
expmnt()
) else {
printf("You camnot run the experiment functions while
execution is suspended with Y. nrExit this meru and try again.nr")s;
}
break}
case 'g': /% Enter the routine which reads from and
writes to any port. %/
testio()y

break}
case 'h':
memory_dump() /% Enter the routine which displays the
contents of selected portions of
memory. ¥*/
break
case ‘'i’:
log_menul)3 /% Enter the routine which permits the
contents of the bubble memory log to
be modified. »/
break}
case 'Z':
returnsg
default:

printf("Use a valid letter please! nr')y

7/ FETEETEI I I I I TN S I DI D HEIETE 636 36 96 26 36 JEIEIE 0030 S50 3606 38 I3 D06 I IEIE 36 JE -1 96 36 296 3696 36 36 3 3 I JEF I 336 /

/% This routine allows you to output data manually to any port, or to read
data from any port. ®/

void testiolvoid)

<
char data) /% A character entered from the keyboard. %/
/% Repetitively display the following menu until choice Z is made. %/
while (TRUE)
printf(
*“nmrMenual port I/0 functions. Pick one! n.r
A Imput.nr:

B Output.nr
2 Return to previous mernu.n.r")y

/% Read » charscter from the keyboard, convert it to lower case,
and display it. »/

data = tolower(termin()}

printf("Zenr*,data)s

switchidata) (

212

case 'a': /% Enter the function which allows the
user to read data from a port. ¥/
testinput()s
breaks
case 'b': /7% Enter the function which allows the
user to write data to any port. ®*/
tes toutput()3
breaks
case '2': /% Quit., »/
return;
default:
printf("Use a valid letter plesse. nr");
breaks

/TR IHIHHEHEE HEREHHEHHHHEHEHEHEHIHEEEHEEHHEHEHEENHE O/

/% The C program bagins here. This routine gets control from the assembly
language program which resides at address 0. »*/

void maintvoid)

14

/% Make sure that each of these pointers is intialized to point to the
same memory as the corresponding buffer., Thus the same data can be
accessed either as a list of characters (a buffer) or as a structure
(if the contents need to be accessed individually.) */

pagezero = (struct pageOdata *) pageO_buffer;

log_page = (struct full_log_page %) log_buffer;

/% Initialize the system ports. */
inithardwaret!)3

/% See if there is a terminal attached. 1If so, turn off any subsystems
which are currently on and enter the menu diagnostic system. »/
if (prtconnected = checkprt(1) {
shut_down_no_log()}
while (TRUE)
menu(EXPERIMENTOK })
)
/% 1f there is no terminal attached, we must be in space, so run the
expaeriment. */
) else
expmnt()) /% Run the experiment. */

Z. FILENAME MBRK.S

3 mbrk.s

$ MHHEHHEHEHHEHEHEHHHEHEHEHHEHEHEHHEHOHHHHSHHEHHEHOOHEEHEHEHHHHEHEHEH R

’
’
’
’

mbrk(} function for use with malloc() and calloct).

File "spec" declares 2 single section of RAM, MRAMSZ bytes long,
to use for memory allocstion, and START in file "start.asm"
initializes MBRKPTR to point to that memory.

3 IHHEHEHEEHHEHHEHEHEHEHHEE I EHEEHEEEHEHE SR HEHE

213

global mbrk,MBRKPTR,MRAMSZ
option long=4 3} assume long=4 bytes
region code
mbrk: push ix 3} char ¥mbrk(long size, long *realsize) «
1d ix,0
add ix,sp 3 (ix44,5,6,7):3ize, (ix+8,9):realsize
1d de, (MBRKPTR) 3} return value is address of mamory section
1d a,d -
or e
jr zsout)} Zero means memory section is in use
1d oy (ix+6)
or tixe7)
jr nz,out 3 nonzero means more than 64K requested
1ld el ix+4))} requested 'size' to be
id b,(ix+5)
id hl,MRAMSZ 3 chack if 'size' bytes are available
3 assumes MRAMSZ is less than 64K
or a 3 clear the carry flag.
sbe hl,be
jr crout
1d be,0 3 mark memory section as used
1d (MBRKPTR) ,bec sy de still holds former MBRKPTR
1d 1,(ix+8) } get the pointer to 'realsize’
id hy{ix+9)
id thl),lo MRAMSZ 3} write back actual size of memory section
inc hl
1d (hl),hi MRAMSZ
inc hl
1d (h1),0
inc hl *
1d (hl1),0
je ret 3 de is the return value
out: 1ld de,0 3 out of memory, return zero pointer -
ret: 1d sprix
pop ix
ret

AA. FILENAME NEWIO.H

extern char inputichar port)s
extern void outputichar port,char data))

AB. FILENAME NEWIO.S

) newio.s

export input, output

region code

3 char inputichar port))

input:
push ix sThere are no local veariables.
1ld ix,0

214

add ix,sp

1d Grlixed) }Put port address in register c.
in alc) 1Get the data from the port.
pop ix jRestore ix to the value it had before this

yfunction was called.
ret

3 void output (char port, char deta)y

output:
push ix
1d ix,0 sThere are no local variables.
add ix,sp
id c,(ix+4) 3Put port address in register c.
1d a,(ix+6) jPut data in register a.
out (c)ra sWrite the data to the port.
pop ix jRestore ix to the value it had before this
sfunction was called.
ret

AC. FILENAME POWER.H

7% This file contains external prototyping declarations for all functions
in "power.c". %/

extern char power_statusivoid);
extern char power_write(char command);
extern void pwrent(void)s

AD. FILENAME POWER.C

/% power.c */

#include "vibro.h"
#include "bubble.h"
#include "convert.h"
#include "inout.h"
$include "delay.h"
8include "expmnt.h"
#include "newio.h"
#include "global.h"

char power_status(void)y
char power_write(char command))
void pwrent(void);

/7 IHHHHHEHHHHHHHEHHHHHHHHHHEHHHHHHHHHHHHHHHHHHHHOHHHHHHHHHEHHEHHHHHHEHHHEHEHE /
/7% This routine gets the status from the power board. ¥/

char power_status(void)

<
return{ input(PONERIN))}

215

7 IHEHHEHHEHHHEHEHOEHHEHEHHEHEEEEEHEEEE HEHEEHEEHEHEEEEHEHEHHEHEEEHE N/
/% This routine sends commands to the power board. %/

char power_writel(char command)
<
int i)
char status)
char oncommandy /% TRUE if command is an ON command,
FALSE otherwise. ¥*/
char relayons /% TRUE if the indicated relay is on,
FALSE otherwise. #/
/% Try to send the command to the power board.
Return TRUE if successful. Return FALSE after you give wp
in disgust. »/
for(i=03i<TRIES)i+¢) (
output(POWEROUT ;command)}
output(BSETC1,PHRSTROBE)}
delay(PWRDELAY)3
output({BCLRC1,PHRSTROBE)3
delay(PHRDELAY)3 /% Wait PWRDELAY x 10 ms for the
relays to respond. %/
/% The command is intended to turn a relay on only if the
last bit is set (1). »/
oncommand = ONBIT & command}
status = NOPOWER | power_statust)}
/% To see whether the indicated relay is on,
see whether only the status bit in the
relay’'s assigned bit position is a zero. If it is, then
that relay is on. »/
relayon = status & command)
7% If the relay's position matches that commanded, then
log a successful setting of thae relay. */
if ({oncommand &8 relayon) || ('oncommand 8& 'relayon)) {
return{ TRUE)3
}
printf("Trying again to switch relays. nr")s

/% If you got this far, then the relay's position did not match
that commanded, so log a failure. %/
return(FALSE)s

/W HHHHEHHHHEHHHEHNEHHEEHE R HE S HHHE I HEHHEE SRS S/
/% This routine sends commands to the power board. #/
/Y S I HHEHHHHHEEHHEHHHHHHRHHHHEHHE HHHHHHHEHHHEHHHEHHEHHEHHHEHHE
void pwrent{void)
<

char data) /% Dats from the keyboard. »*/

static int relayl] = ¢
SSORON, SSDROFF, VCOON, VCOOFF, ADON, ADOFF,
MATFON, MATFOFF, HEATON, HEATOFF
)y

while(TRUE) (

216

NXLCHIOMTMOOODO»

printf(" n.rPONER SHITCH CONTROL.'n.rnry
SSOR on. n
SSOR off. nr
vCo on.nr
V€O off. n.r
A/D on. n\r
A/D off.nr.
MATCHED FILTER on. nr
MATCHED FILTER off.:n'r\
HEATER on.\n.r;
HEATER off.nnr
READ power status port.\nr
Back to the MAIN MENU..n.r")s

data = tolower(termin());
printf("Zcnr",data);
if (data >= ‘a' 83& data <= 'j') (
if('power_write(relayldata-‘a‘'])))
printf("Power control command failed. nr");
)} else ¢
switch (data) €
case 'K':
printf("Zs nr',ctoh(power_status()));
break}
case '2':
returns
default:
printf("Use a valid letter, please.nr");
breaks

AE. FILENAME START.S

E
%
!

W W W W W W W W W W W

February 19, 1988 start.s

This startup code initializes interrupt vectors snd runs START at
reset

to initialize RAM and call the user function maint).

The companion link specification file is "spec” which defires
many of the imported symbols. Also see file "mbrk.asm" for the
mbrkt)} function if you want to use melloct) or callocl).

The program is adepted from an example given in the UNIWARE
merml, Compiler section, pp. 13-15.

§ SHEHEHHEHHHHHEHHHHHHHHHHSHHHHHHHEHHHHHHHHHHEHHHHHHHHHHHHHHHHHHHHHE HHEHHH

export START .PBR'SPTR
import main,STACKTOP,RAMDATA ,ZRAM,ZRAMS2 , IRAM, IRAMSZ , MRAM

217

§ FETEIEIEIE SN SIS T T IE IS IE I SIS I I 06 T T I 6D 0T 360 SHI T S 06 JEIEI- 0 36 6 36 JEDEEIJE0E 36 0696 3698 3¢

1 Define a variable to track memory allocations in mbrk().
§ B I I IEIEIEIIIE I DI I TN HEIEIEIE J I M I DRI I DI 36 36 36 36 JHEIE 29

region ram
MBRKPTR ds 2 3} tchar #) to available memory

3 NI N HHHHHHEHHHEHHHEHHEHHHHHHHEHHHOHHEHHHEHEOHEE
) Reset code must be linked to address 0.
§ IHHEEHHEHEEEEHHEEHE O HE HEHHEHEHOHHHE
region reset
1d sp, 10 STACKTOP 3 initial stack pointer (0x10000 as 0)

jp START 3 initial execution address
org 0x08

ARESTART: JRESTART LOCATION 1
Ip START
org 0x10

BRESTART: SRESTART LOCATION 2
Jp START
org 0x18

CRESTART: 3RESTART LOCATION 3
jp START
org 0x20

DRESTART: 3RESTART LOCATION ¢
ijp START
org 0x28

ERESTART: JRESTART LOCATION 5
jp START
org 0x2C

FRESTART: SRESTART LOCATION C
jp START
org 0x30

GRESTART: 3RESTART LOCATION 6
jp START
org 0x34

HRESTART: sRESTART LOCATION B
jp START
org 0x38

IRESTART: 3RESTART LOCATION 7
jp START
org O0x3C

JRESTART: JRESTART LOCATION A
jp START
org Ox66

NONMASKI : $NON-MASKABLE INTERRUPT
jp START

3 SHHHHHHHHHHHHHHHHHERHHHHHEHHHHHHHHHEHHHHHEHHHHEHHOHHHHHHHEHE

3 This code can be anywhere; the reset code jumps to it.

3 SHHEHHEHHHHHHHEHHHE
region code

START: 1ld ix,0) ond of stack freme chain
1d hl ,MRAM 3 initialize memory allocator
1d (MBRKPTR) ,hl

3 S HHHHEHEHHHHHHHHEHEHHHHHHHHEHEHHHHHE HHHHHHE
) Zero out uninitialized RAM.

218

3 It is assumed here that ZRAMSZ > 1 but this is guaranteed
s as long as MBRKPTR (above) is defined in region ram.
3 I IIHENI I IO NI NI I I I NN NI

1d hl,ZRAM 3} zero ZRAMSZ bytes here

1d (hl),0 s zero first byte

1d de,ZRAM+1 3 repeatedly zero other bytes
1d be, ZRAMSZ-1

ldir

3 IHHHBHHEHEHHHHHEHHHHHHHHHHHHEHHHHEHOHHHHHOBEEHEEEHHEHHEHEHHEE

) Initialize other RAM from ROM.
3 HHHHHEHEHHHHHHHHHHHHRHHRHHHEHEHHHHHEHHEHEHEHEHHEHEHROHEHHHHHEHE
ld hl,RAMDATA
1d de,IRAM
1d be, IRAMSZ
1d .)b
or c
jr Z,none
ldir
none:

3 FEETEHIEIIEI NI I 636 JEIEEIIE I TN HIII I T T HIEIEIEIEIEIEIE I 636 66 I FTEIEJEPE I I I I
3 Invoke main() with no arguments.
3 HFEIIIIEIIETIE I I I NI JIHTEIIEIIEI 6 H 606 06 36 I 266 3696 3636 696 JI6I6 6 3 M 38
call main 3 any return value is “int" in de
done: halt 3y halt if main returns

3 FEREIERIET NI NI I I IEIEIEI I I TN I JI NI I I TN IEI I 1696 6 H I NI I I NI

To vector an interrupt to a C function, you must go though

a register save routine like the one shown here.

If the "-r exx” option is being given to the command line,

then registers bec' de' and hl’' need not be saved and restored

since the compiler will make no use of them. The compiler

does not use af' in any case.

3 FEFEIEIEIEIEI I I I JTE JE T DN I 26 HEIEIE T IEIIIE I HIEIETE I FIEIE I I NN HEHIIEIE N I NI
region code

W e e W e e

3 INTERRUPT
push af 3 save registers
push be
push de
push hl
push ix
push iy
@xx
push be
push de
push hl
X%
call cfon 3 call some C function
axx
pop hl 3 restore registers
pop de
pop be
oxx
Pop iy
pop ix
pop hl

W W W WE W W W W W W W W W W W W W W e e

y pop de

) pop be

’ pop af

’ ei

) ret 3} return from interrupt

AF. FILENAME ASM.BAT

orem Make asmsource the current subdirectory

ed vibro contrlr asmsource

drem Assemble the specified source file

uasz80 -¢ 80 -n -t ¢ -L 71

Jrem Place the object module in the object subdirectory
copy ¥#.0 vibro contrlr object

erase %*.0

arem Place the assembly listing in the list subdirectory.
copy ¥.lst vibrocontrle list

erase *.lst

AG. FILENAME ASMLIST.BAT

Jrem Fill in the symbols of the specified assembly listing file
Jrem with the values given in the executable module u.out.

Jrem Pipe the completaed listing to the ulist program to give a
arem decent looking print-out.

uabs vibro contrlr u.out < vibrocontrlr list /1l | ulist >> temp print

AH. FILENAME C.BAT

Irem Make csource the current subdirectory.

cd vibro contrlr csource

Jrem Compile the source file.

uccz80 -o -1 -A -L -~ /1

drem Place the resultant object module in the object subdirectory.
copy *.0 ‘vibro contrlr.object

erase %*.0

orem Place the resultant assembly listing in the list subdirectory.
copy *#.lst vibro contrlr.list

erase *.lst

Al. FILENAME LINK.BAT

orem Make object the current subdirectory.

cd vibro contrlr object

Jrem Link the specified object modules together.

ule -f spec -t -v X1 /2 /3 /& /5 /6 /7 /8 /9

Jrem Place the linked module in the contrlr subdirectory as u.out.
copy %*.,out vibro contrlr

erase *,out

arem Create an executable module in the contrlr subdirectory as u.bin.
cd vibro contrlr

ufihex u.out > vibro.hex

AJ. FILENAME LIST.BAT

arem Produce a paginated listing of the specified file, and
Jrem put it in a temporary, scratch file called temp print.
ulist -d -t & -x -0 hdr=41 Z1 >> temp print

AK. FILENAME LOADMAP.BAT

Jrem Create a load map of all the regions in u.out.
urwm -m vibro contrlru.out > temp temp
Jarem Produce a paginated print-out of it.

ulist -d -0 hdr=locadmap temp temp >> temp print

AL. FILENAME PRINTALL.BAT

Jrem Produce a complete listing of the load map, symbol table and
Jrem all source files, and header files.
cd vibro contrlr
call readyout

call loadmap

call promsym

call o

call list spec

call h

call list version.h
call cs

call list version.c
call h

call list vibro.h
call list bubble.h
call cs

call list bubble.c
call h

call list bubrw.h
call s

call list bubrw.s
call h

call list clock.h

221

call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call

cs
list

list
cs
list

list

list

list
cs
list

list
cs
list

list
cs
list

list
cs
list

list
cs
list

list

list

list

list
cs

list
list
list

list
list
list
list
list
list
list
list
list
list
list
list
list
list

cloek.c
convert.h
convert.c
delay.h
delay.s
expmnt.h
expmnt.c
global.h
global.c
initial.h
initial.c
inout.h
inout.c
main.h
main.c
mbrk.s
newio.h
newio.s
power.h
power.c
s.bat
start.s
asm.bat
asmlist.bat
b.bat
backupl.bat
backup2.bat
c.bat
cs.bat
link.bat
list.bat
losdmap.bat
o.bat
printall.bat

promlib.bat
promlink.bat

222

call list promsym.bat
call list readyout.bat

AM. FILENAME PROMLINK.BAT

ed 'vibro contrlr object
link -F linkfile libc.a

AN. FILENAME PROMOUT.BAT

orem Put the print scratch file into the printer queus.
copy 'vibro contrlr batch lpfont+ temp print+ vibro contrlr batch normfont temp print2
print temp print2

AO. FILENAME PROMSYNM.BAT

Jrem Put the symbol from u.out into a scratch file.

unm -fnrstvigx vibro contrlru.out > temp temp

Jrem Produce a paginated version of the symbol table listing.
ulist -d -0 hdrzsymbols temp temp >> tempprint

AP. FILENAME READYOUT.BAT

Jdrem Get rid of the two scratch files used in producing listings.
erase .temp temp

erase tempprint

erase tempprint2

223

APPENDIX 1. RS-232C INTERFACE PIN CONNECTIONS

This appendix contains the complete electrical specification for the RS-232C Inter-
face. It is provided here for convenience. Only a subset of this specification has been
implemented in the Vibro-acoustic Experiment for the purpose of providing communi-

cations between the controller and the terminal, which is useful during ground testing.

Table 16, RS-232C INTERFACE PIN CONNECTIONS

Pin f)l:::lgl-t :'2::; Direction Description
Number nation Deglg-
hation
1 AA FG FRAME GROUND. This lead is

an electircal equipment frame and
power ground.

BA D To DCE | TRANSMITTED DATA. This
lead carries the serial digital data

transmitted from the DTE to the
DCE.

3 BB RD To DTE | RECEIVED DATA. This lead
carries the serial digital data re-
ceived at the DTEL.

4 CA RTS To DCE | REQUEST TO SEND. An "O\"
condition on this lead 1s used to

enable the local DCE for data tran-
smission.

5 CB CTS To DTE | CLEAR TO SEND. An "ON”
condition on this lead indicates
whether or not the DCE is ready to
transmit data.

6 CC DSR To DTE | DATA SET READY. An “ON\"
condition on this lead indicates that
the local DCE is ready to process
data and is not in a test, talk, or dial
mode.

[3]

Source: Couch, L. W., Digital and Analog Communication Systems, Macmillan Pub-
lishing Company, 1987, pp. 684-686

Table 17.

RS-232C INTERFACE PIN CONNECTIONS (CONTINUED)

Pin
Number

Circuit
Desig-
nation

Mne-
monic
Desig-
nation

Direction

Description

7

AB

SG

SIGNAL GROUND. This lead es-
tablishes the common ground refer-
ence potential for all circuits except
frame ground on pin 1.

CF

DCD

To DTE

DATA CARRIER DETECT (Re-
ceived Line Signal Detector). This
lead indicates that data from the
remote location is being received
and meets a suitable criterion es-
tablished by the DCE manufuc-
turer.

To DTE

Positive DC Test Voltage

10

To DTE

Negative DC Test Voltage

11

Bell
208A
type cir-
cuit

QM

To DTE

EQUALIZER MODE. This lead is
used to indicate to the DTE that the
adaptive equalizer in the receiver is
reset automatically when error per-
formance is poor. (non-EIlA desig-
nated).

SCF

(S)DCE

To DTE

SECONDARY DATA CARRIER
DETECT. This lead 1s equivalent
to DCD on pin 8 except that it in-
dicates the proper reception of the
secondary channel line signal in-
stead of the primaryv channel re-
cetved line signal.

13

SCB

(SKICTS

To DTE

SECONDARY CLEAR TO SEND.
This lead is equivalent to CTS on
pin 5 except that it indicates the
availability of the secondary chan-
nel instead of indicating the avail-
ability of the primary channe] to
transmit data.

Source: Couch, L. W., Digital and Analog Communication Systems, Macmillan Pub-

lishing Company, 1987, pp. 684-686

(284
[28]
W

Table 18.

RS-232C INTERFACE PIN CONNECTIONS (CONTINUED)

Pin Circuit ;l()l:fic . e
Number E:tsilogx; Desig- Direction Description
nation

14 SBA (S$)TD To DCE | SECONDARY TRANSMITTED
DATA. This lead is equivalent to
TD on pin 2 except that it is used
to transmit data via the secondary
channel.

Bell NS To DCE | NEW SYNC. This lead may be

208A used on an optional basis with the

type cir- DCE at a master station of a mul-

cuit tistation private line network, such
as in a polling operation. to ensure
rapid resynchronization of the re-
ceiver on data from many different
remote transmitters (non-EIA des-
ignated).

15 DB TC To DTE | TRANSMITTER CLOCK. This
lead is used to provide the DTE
with signal element timing informa-
tion.

16 SBB (S)RD To DTE | SECONDARY RECEIVED
DATA. This lead is equivalent to
RD on pin 3 except that it is used
to receive data on the secondary
channel.

Bell DCT To DTE | DIVIDED CLOCK. TRANSMIT-
208A TER. A square-wave signal at
type cir- one-third the nominal bit rate ap-
cuit pears on this lead whenever power
is supplied to the DCE (non-E1A
designated.).

Source: Couch, L. W., Digital and Analog Communication Systems, Macmillan Pub-

lishing Company, 1987, pp. 684-686

Table 19. RS-232C INTERFACE PIN CONNECTIONS (CONTINUED)

N Mne-
: Circuit .
Pin h monic o I
Number E:tsi:)g'; Desig- Direction Description
nation
17 DD RC To DTE | RECEIVER CLOCK. This lead is
used to provide the DTE with re-
ceived signal element timing infor-
mation.
18 Bell DCR To DTE | DIVIDED CLOCK, RECEIVER.
208A A square-wave signal on this lead
type cir- provides the receiver timing infor-
cuit mation at one-third the nonunal bit
rate (non-E1A designated).
19 SCA (S)RTS | To DCE | SECONDARY REQUEST TO

SEND. This lead is equivalent to
RTS on pin 4 except that it requests
to use the secondary channel in-
stead of the primary data channel.

20 CDh DTR To DCE | DATA TERMINAL READY. An
“ON" condition on this lead indi-
cates that the DTE is ready to be
connected to the comununication
channel.

21 CG SQ To DTE | SIGNAL QUALITY DETECT.
This lead is used to indicate whether
or not there is a high probabilitv of
an error in the received data.

Source: Couch. L. W., Digital and Analog Comnuatication Systens, Macmillan Pub-
lishing Company, 1987, pp. 684-686

Table 20. RS-232C INTERFACE PIN CONNECTIONS (CONTINUED)

N Mne-
. Circuit .
Pin ; monic o . L.
Number ln)aetsilogr; Desig- Direction Description
nation
22 CE Rl To DTE | RING INDICATOR. An “ON”

condition on this lead indicates that
a ringing signal is being received on
the communication channel.

23 CH To DCE | DATA RATE SELECTOR. This
lead is used to select between the
two data signalling rates in the case
of dual rate DCE.

Cl To DTE | DATA RATE SELECTOR. This
lead is used to select between the
two data signalling rates in the case
of dual rate DCE.

24 DA TC To DCE | EXTERNAL TRANSMITTER
CLOCK. This lead is used to pro-
vide the transmitting signal con-
verter with signal element timing
information.

25. Bell To DCE | BUSY. This lead is used for testing
208A purposes by Telephone Company
type cir- personnel (non-E1A designated).
cuit

Source: Couch, L. W., Digital and Analog Comnunication Systems, Macmillan Pub-
lishing Company, 1987, pp. 684-686

228

LIST OF REFERENCES

INTEL Corporation, BPK 5V75A4 Four-Megabit Bubble Memory Prototyping Kit
User's Manual, No. 2444-001, (undated).

Couch, Leon W., Digital and Analog Communication Systems, Macmillan Publishing
Company, 1987.

Wallin, J. W., Microprocessor Controller with Nonvolatile Memory Implementation,
MSEE Thesis, Naval Postgraduate School, Monterev, CA, December 1985.

‘GAS, Small Self-contained Payloads, Experimenter Handbook, National Aeronau-
tics and Space Administration, Goddard Space Flight Center, 1987.

Stehle, C. D., Vibration Isolation of a Microphone, MS in Engineering Acoustics
Thesis, Naval Postgraduate School, Monterey, CA, September 1983.

Jordan, D. W., 4 Maiched Filter Algorithm for Acoustic Signal Detection, NISEE

Thesis, Naval Postgraduate School, Monterey, CA, June 1985.

Bovd, A. W., Kosinski, B. P., and Weston, R. L., “Autonomous Measurement of
Space Shuttle Pavload Bay Acoustics During Launch,” Naval Research Reviews,
Vol. 39, No. 1, pp. 9-17, 1987.

Frey, T. J., Jr., A 32-Bit Microprocessor Based Solid State Data Recorder for Space
Based Applications, MSEE Thesis, Naval Postgraduate School, Monterey, CA,
March 1986.

Kuebler, D. P., Signal Acquisition and Processing for Autonomous Space Shutile
Cargo Bay Acoustic Measurements, Defense Technical Information Center (DTIC)
Report No. ADA200426, Master's Thesis, Naval Postgraduate School, Monterey,
CA, June 1988.

229

10

11

I2.

13.

14.

15.

16.

17.

18.

19.

20.

National Semiconductor Corp., NSCS800 High-Performance Low-Power Micro-
processor, July 1983,

National Semiconductor Corp., NSC8/04 RAM-I, O-Timer, February 1984.
Ghausi, M. S., and Laker, K. R., Modern Filier Design, Prentice-Hall, Inc., 1981.

Micro-Cap III Electronic Circuit Analysis Program Instruction Manual, First Edi-
tion, Spectrum Software, 1988.

Jung, W. G., IC Op-Amp Cookbook, Third Edition, pp. 236-237, Howard W. Sams
& Company, 1986.

S. Michael, Notes for EC4100 ! Advanced Nenwork Theory,. Naval Postgraduate
School, Monterey, CA, 1988 (unpublished).

Kernighan, B. W. and Ritchie, D. M., The C Programming Language, Prentice-Hall,
Inc., 1978.

Software Development Systems, Inc., UNTIVARE Software Development System,
Release 3.2. 1986.

Bilofsky, W., TOOLWORKS C 80, Version 3.1, The Software Toolworks. 1984.
National Semiconductor Corp., Linear Databook, 1982.

PCPP PC Personal Programmer User's Guide, Revision-002, Change 1, Intel Cor-
poration, 1987.

230

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, VA 22304-6145

Library, Code 0142
Naval Postgraduate School
Monterey, CA 93943-5002

Commander

Naval Space Command
Attn: Code N3
Dahlgren, VA 22448

Commander

United States Space Command
Attn: Technical Librarv
Peterson AFB, CO 80914

Navy Space System Division
Chief of Naval Operations (OP-943)
Washington, DC 203035-2000

Department Chairman, Code 62

Dept. of Electrical and Computer Engineering
Naval Postgraduate School

Monterev. CA 93943-5000

Dr. Rudolf Panholzer

Chairman, Space Systems Academic Group
Cod. 77

Naval Postgraduate School

Monterey, CA 93943

Mr. Larry Frazier
Naval Postgraduate School
Monterey CA 93943-5000

Dr. Sherif Michael

Dept. of Electrical and Computer Engineering
Code 62Mi

Naval Postgraduate School,

Monterey, CA 93943

231

No. Copies
2

(%)

10.

11.

12.

13.

14.

16.

17.

18.

19.

20.

National Aeronautics and Space Administration
Technical Librarv

NASA Headquarters

600 Independence Ave.

Washington, DC 20346

Mr. David Rigmaiden, Code 72
Space Systems Academic Group
Naval Postgraduate School
Monterey, CA 93943-5000

LT Charles B. Cameron, USN
1139 Leahy Rd.
Monterey, CA 93940-5318

Prof. Steven Garrett, Code 61Gx
Dept. of Physics

Naval Postgraduate School
Monterey, CA 93943-5000

Prof. Tom Hofler, Code 61Hf
Dept. of Physcis

Naval Postgraduate School
Monterey, CA 93943-5000

Space Projects Group, Code 72
Naval Postgraduate School
Monterey, CA 93943-5000

CDR Steven P. Hannifin USN
¢ o Carrier Airborne Early Warning Squadron 110
NAS Miramar, CA 92145-5000

CDR R. Braden, USN
¢ o Carrier Airborne Early Warning Squadron 110
NAS Miramar, CA 92145-5000

CPT R. Byrnes, USA

c'o Code 39

Naval Postgraduate School
Monterey, CA 93943-5000

Research Administration (Code 012)
Naval Postgraduate School
Monterey, CA 93943

LT Stewart Cobb

SSD CLFPD

P. O. Box 92960

LLAFB

Los Angeles, CA 90009-2960

232

t9

Office of Naval Research
Phvsics Division - Code 1112
800 N. Quincy St.

Arlington, VA 22217

Commanding Officer

Naval Research Laboratory
Attn: E. Senasack (Code 8220)
4355 Overbrook Ave,,
Washington, DC 20375-5000

233

